Câu hỏi:
11/07/2024 178
Cho \[\cos \alpha = - \frac{4}{5}\] và góc α thỏa mãn 90° < α < 180°. Khi đó.
Cho \[\cos \alpha = - \frac{4}{5}\] và góc α thỏa mãn 90° < α < 180°. Khi đó.
A. \[\cot \alpha = \frac{4}{3}\];
A. \[\cot \alpha = \frac{4}{3}\];
B. \[\sin \alpha = \frac{3}{5}\];
B. \[\sin \alpha = \frac{3}{5}\];
C. \[\tan \alpha = \frac{4}{5}\].
C. \[\tan \alpha = \frac{4}{5}\].
D. \[\sin \alpha = - \frac{3}{5}\].
D. \[\sin \alpha = - \frac{3}{5}\].
Trả lời:
Đáp án đúng là: B
Ta có sin2α + cos2α = 1
⇔ sin2α = 1 – cos2α = 1 – \({\left( { - \frac{4}{5}} \right)^2}\)= 1 – \(\frac{{16}}{{25}}\)= \(\frac{9}{{25}}.\)
⇔ \(\left[ \begin{array}{l}\sin \alpha = \frac{3}{5}\\\sin \alpha = - \frac{3}{5}\end{array} \right.\)
Vì 90° < α < 180° nên sinα > 0. Do đó \(\sin \alpha = \frac{3}{5}\)
⇒ tanα = \(\frac{{\sin \alpha }}{{cos\alpha }} = - \frac{3}{4}\), cotα = \(\frac{{co{\mathop{\rm s}\nolimits} \alpha }}{{\sin \alpha }} = - \frac{4}{3}\).
Vậy đáp án đúng là B.
Đáp án đúng là: B
Ta có sin2α + cos2α = 1
⇔ sin2α = 1 – cos2α = 1 – \({\left( { - \frac{4}{5}} \right)^2}\)= 1 – \(\frac{{16}}{{25}}\)= \(\frac{9}{{25}}.\)
⇔ \(\left[ \begin{array}{l}\sin \alpha = \frac{3}{5}\\\sin \alpha = - \frac{3}{5}\end{array} \right.\)
Vì 90° < α < 180° nên sinα > 0. Do đó \(\sin \alpha = \frac{3}{5}\)
⇒ tanα = \(\frac{{\sin \alpha }}{{cos\alpha }} = - \frac{3}{4}\), cotα = \(\frac{{co{\mathop{\rm s}\nolimits} \alpha }}{{\sin \alpha }} = - \frac{4}{3}\).
Vậy đáp án đúng là B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tam giác ABC có các góc \(\widehat A = 75^\circ ,\widehat B = 45^\circ \). Tính tỉ số \(\frac{{AB}}{{AC}}\).
Tam giác ABC có các góc \(\widehat A = 75^\circ ,\widehat B = 45^\circ \). Tính tỉ số \(\frac{{AB}}{{AC}}\).
Câu 3:
Nếu 3cosx + 2 sinx = 2 và sinx < 0 thì giá trị đúng của sinx là:
Nếu 3cosx + 2 sinx = 2 và sinx < 0 thì giá trị đúng của sinx là:
Câu 4:
Tam giác ABC có AB = 7; AC = 5 và \(\cos \left( {B + C} \right) = - \frac{1}{5}\). Tính BC
Câu 6:
Tam giác ABC có các góc \(\widehat B = 30^\circ ,\widehat C = 45^\circ \), AB = 3. Tính cạnh AC.
Tam giác ABC có các góc \(\widehat B = 30^\circ ,\widehat C = 45^\circ \), AB = 3. Tính cạnh AC.
Câu 7:
Tam giác ABC có các cạnh a; b; c thỏa mãn điều kiện:
(a + b + c)(a + b – c) = 3ab. Khi đó số đo của góc C là.
Tam giác ABC có các cạnh a; b; c thỏa mãn điều kiện:
(a + b + c)(a + b – c) = 3ab. Khi đó số đo của góc C là.
Câu 9:
Kết quả rút gọn của biểu thức \(A = \frac{{\cos ( - 108^\circ ).\cot 72^\circ }}{{\tan ( - 162^\circ ).\sin 108^\circ }} - \tan 18^\circ \) là :
Kết quả rút gọn của biểu thức \(A = \frac{{\cos ( - 108^\circ ).\cot 72^\circ }}{{\tan ( - 162^\circ ).\sin 108^\circ }} - \tan 18^\circ \) là :
Câu 10:
Tam giác ABC có \(AC = 3\sqrt 3 \), AB = 3, BC = 6. Tính số đo góc B
Tam giác ABC có \(AC = 3\sqrt 3 \), AB = 3, BC = 6. Tính số đo góc B
Câu 13:
Hình bình hành có hai cạnh là 3 và 5, một đường chéo bằng 5. Tìm độ dài đường chéo còn lại.
Hình bình hành có hai cạnh là 3 và 5, một đường chéo bằng 5. Tìm độ dài đường chéo còn lại.
Câu 14:
Cho tan α = 2. Giá trị của \(A = \frac{{3\sin \alpha + \cos \alpha }}{{\sin \alpha - \cos \alpha }}\) là :
Cho tan α = 2. Giá trị của \(A = \frac{{3\sin \alpha + \cos \alpha }}{{\sin \alpha - \cos \alpha }}\) là :
Câu 15:
Hình bình hành ABCD có AB = a; \(BC = a\sqrt 2 \) và \(\widehat {BAD} = 45^\circ \). Khi đó hình bình hành có diện tích bằng
Hình bình hành ABCD có AB = a; \(BC = a\sqrt 2 \) và \(\widehat {BAD} = 45^\circ \). Khi đó hình bình hành có diện tích bằng