Câu hỏi:
23/07/2024 1,220
Kết quả rút gọn của biểu thức \(A = \frac{{\cos ( - 108^\circ ).\cot 72^\circ }}{{\tan ( - 162^\circ ).\sin 108^\circ }} - \tan 18^\circ \) là :
Kết quả rút gọn của biểu thức \(A = \frac{{\cos ( - 108^\circ ).\cot 72^\circ }}{{\tan ( - 162^\circ ).\sin 108^\circ }} - \tan 18^\circ \) là :
A. 1;
A. 1;
B. – 1;
B. – 1;
C. 0;
C. 0;
D. \(\frac{1}{2}\).
D. \(\frac{1}{2}\).
Trả lời:
Dáp án đúng là: C
Ta có : \(A = \frac{{\cos ( - 108^\circ ).\cot 72^\circ }}{{\tan ( - 162^\circ ).\sin 108^\circ }} - \tan 18^\circ = \frac{{\cos (90^\circ + 18^\circ ).\cot \left( {90^\circ - 18^\circ } \right)}}{{ - \tan (180^\circ - 18^\circ ).\sin \left( {90^\circ + 18^\circ } \right)}} - \tan 18^\circ \)
\( \Leftrightarrow A = \frac{{ - \sin 18^\circ .\tan 18^\circ }}{{ - \tan 18^\circ .cos18^\circ }} - \tan 18^\circ = \frac{{\sin 18^\circ }}{{cos18^\circ }} - \tan 18^\circ = \tan 18^\circ - \tan 18^\circ = 0\).
Dáp án đúng là: C
Ta có : \(A = \frac{{\cos ( - 108^\circ ).\cot 72^\circ }}{{\tan ( - 162^\circ ).\sin 108^\circ }} - \tan 18^\circ = \frac{{\cos (90^\circ + 18^\circ ).\cot \left( {90^\circ - 18^\circ } \right)}}{{ - \tan (180^\circ - 18^\circ ).\sin \left( {90^\circ + 18^\circ } \right)}} - \tan 18^\circ \)
\( \Leftrightarrow A = \frac{{ - \sin 18^\circ .\tan 18^\circ }}{{ - \tan 18^\circ .cos18^\circ }} - \tan 18^\circ = \frac{{\sin 18^\circ }}{{cos18^\circ }} - \tan 18^\circ = \tan 18^\circ - \tan 18^\circ = 0\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tam giác ABC có các góc \(\widehat A = 75^\circ ,\widehat B = 45^\circ \). Tính tỉ số \(\frac{{AB}}{{AC}}\).
Tam giác ABC có các góc \(\widehat A = 75^\circ ,\widehat B = 45^\circ \). Tính tỉ số \(\frac{{AB}}{{AC}}\).
Câu 3:
Nếu 3cosx + 2 sinx = 2 và sinx < 0 thì giá trị đúng của sinx là:
Nếu 3cosx + 2 sinx = 2 và sinx < 0 thì giá trị đúng của sinx là:
Câu 4:
Tam giác ABC có AB = 7; AC = 5 và \(\cos \left( {B + C} \right) = - \frac{1}{5}\). Tính BC
Câu 6:
Tam giác ABC có các góc \(\widehat B = 30^\circ ,\widehat C = 45^\circ \), AB = 3. Tính cạnh AC.
Tam giác ABC có các góc \(\widehat B = 30^\circ ,\widehat C = 45^\circ \), AB = 3. Tính cạnh AC.
Câu 7:
Tam giác ABC có các cạnh a; b; c thỏa mãn điều kiện:
(a + b + c)(a + b – c) = 3ab. Khi đó số đo của góc C là.
Tam giác ABC có các cạnh a; b; c thỏa mãn điều kiện:
(a + b + c)(a + b – c) = 3ab. Khi đó số đo của góc C là.
Câu 9:
Tam giác ABC có \(AC = 3\sqrt 3 \), AB = 3, BC = 6. Tính số đo góc B
Tam giác ABC có \(AC = 3\sqrt 3 \), AB = 3, BC = 6. Tính số đo góc B
Câu 12:
Hình bình hành có hai cạnh là 3 và 5, một đường chéo bằng 5. Tìm độ dài đường chéo còn lại.
Hình bình hành có hai cạnh là 3 và 5, một đường chéo bằng 5. Tìm độ dài đường chéo còn lại.
Câu 13:
Cho tan α = 2. Giá trị của \(A = \frac{{3\sin \alpha + \cos \alpha }}{{\sin \alpha - \cos \alpha }}\) là :
Cho tan α = 2. Giá trị của \(A = \frac{{3\sin \alpha + \cos \alpha }}{{\sin \alpha - \cos \alpha }}\) là :
Câu 14:
Hình bình hành ABCD có AB = a; \(BC = a\sqrt 2 \) và \(\widehat {BAD} = 45^\circ \). Khi đó hình bình hành có diện tích bằng
Hình bình hành ABCD có AB = a; \(BC = a\sqrt 2 \) và \(\widehat {BAD} = 45^\circ \). Khi đó hình bình hành có diện tích bằng