Câu hỏi:

21/07/2024 424

Cho ∆ABC và các khẳng định sau:

(I) b2 – c2 = a(b.cosC – c.cosB);

(II) (b + c)sinA = a(sinB + sinC);

(III) ha = 2R.sinB.sinC;

(IV) S = R.r.(sinA + sinB + sin C);

Số khẳng định đúng là:

A. 1;

B. 2;

C. 3;

D. 4.

Đáp án chính xác

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Ta xét khẳng định (I):

Áp dụng định lí côsin cho ∆ABC ta có:

b2 – c2 = c2 + a2 – 2ca.cosB – (a2 + b2 – 2ab.cosC)

= c2 + a2 – 2ca.cosB – a2 – b2 + 2ab.cosC

= c2 – b2 + 2a(b.cosC – c.cosB)

Þ b2 – c2 = c2 – b2 + 2a(b.cosC – c.cosB)

Þ 2(b2 – c2) = 2a(b.cosC – c.cosB)

Þ b2 – c2 = a(b.cosC – c.cosB).

Do đó khẳng định (I) đúng.

Ta xét khẳng định (II):

Áp dụng hệ quả định lí sin cho ∆ABC ta có:

(b + c)sinA = \[\left( {2R.\sin B + 2R.\sin C} \right).\frac{a}{{2R}}\]

\[ = \left( {\sin B + \sin C} \right).\frac{{2R.a}}{{2R}}\]

= a(sinB + sinC).

Vì vậy khẳng định (II) đúng.

Ta xét khẳng định (III):

Áp dụng hệ quả định lí sin cho ∆ABC ta có:

2R.sinB.sinC = \(2R.\frac{b}{{2R}}.\frac{c}{{2R}}\)

\( = \frac{{bc}}{{2R}} = \frac{{abc}}{{4R}}.\frac{2}{a}\)

\( = \frac{{2S}}{a} = {h_a}\).

Vì vậy khẳng định (III) đúng.

Ta xét khẳng định (IV):

Áp dụng hệ quả định lí sin cho ∆ABC ta có:

R.r.(sinA + sinB + sin C) = \(R.r.\left( {\frac{a}{{2R}} + \frac{b}{{2R}} + \frac{c}{{2R}}} \right)\)

\[ = R.r.\frac{1}{R}\left( {\frac{a}{2} + \frac{b}{2} + \frac{c}{2}} \right)\]

\[ = r.\frac{{a + b + c}}{2} = r.p = S\].

Vì vậy khẳng định (IV) đúng.

Vậy có 4 khẳng định đúng, ta chọn phương án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Giả sử CD = h là chiều cao của tháp, trong đó C là chân tháp.

Media VietJack

Một người đứng tại vị trí A (\(\widehat {CAD} = 63^\circ ),\) không sang được bờ bên kia để đo chiều cao h của tháp nên chọn thêm một điểm B (ba điểm A, B, C thẳng hàng) cách A một khoảng 24 m và \[\widehat {CBD} = 48^\circ \] để tính toán được chiều cao của tháp. Chiều cao h của tháp gần nhất với:

Xem đáp án » 25/10/2024 1,704

Câu 2:

Cho ∆ABC có a.sinA + b.sinB + c.sinC = ha + hb + hc. Khi đó ∆ABC là:

Xem đáp án » 13/07/2024 1,231

Câu 3:

Từ vị trí A, người ta quan sát một cái cây cao mọc vuông góc với mặt đất như hình vẽ.

Media VietJack

Biết vị trí quan sát cách mặt đất một khoảng AH = 4 m và khoảng cách từ chân đường vuông góc của vị trí quan sát A trên mặt đất tới gốc cây là HB = 20 m, \(\widehat {BAC} = 45^\circ \). Chiều cao của cây gần nhất với giá trị nào sau đây?

Xem đáp án » 20/07/2024 383

Câu 4:

Cho biết tanα = –3 (0° ≤ α ≤ 180°). Giá trị của \(H = \frac{{6\sin \alpha - 7\cos \alpha }}{{6\cos \alpha + 7\sin \alpha }}\) bằng:

Xem đáp án » 22/07/2024 355

Câu 5:

Trên nóc một tòa nhà có một cột ăng-ten cao 5 m. Từ vị trí quan sát A cao 7 m so với mặt đất, có thể nhìn thấy đỉnh B và chân C của cột ăng-ten dưới góc 50° và 40° so với phương nằm ngang.

Media VietJack

Chiều cao của tòa nhà gần nhất với giá trị nào sau đây?

Xem đáp án » 18/07/2024 231

Câu 6:

Từ hai vị trí A và B của một tòa nhà, người ta quan sát được đỉnh C của ngọn núi. Biết rằng độ cao của tòa nhà là AB = 70 m, phương nhìn AC tạo với phương ngang AH một góc bằng 30°, phương nhìn BC tạo với phương ngang BD một góc bằng 15°30’.

Media VietJack

Ngọn núi đó có độ cao so với mặt đất gần nhất với giá trị nào sau đây?

Xem đáp án » 13/07/2024 181

Câu 7:

Cho ∆ABC thỏa mãn \[\sin A = \frac{{\sin B + \sin C}}{{\cos B + \cos C}}\]. Khi đó ∆ABC là:

Xem đáp án » 22/07/2024 157

Câu 8:

Cho biết \(2\cos \alpha + \sqrt 2 \sin \alpha = 2\), với 0° < α < 90°. Giá trị của cotα bằng:

Xem đáp án » 17/07/2024 130

Câu 9:

Cho biết sinα – cosα = \(\frac{1}{{\sqrt 5 }}\)(0° ≤ α, β ≤ 180°). Giá trị của \(E = \sqrt {{{\sin }^4}\alpha + {{\cos }^4}\alpha } \) bằng:

Xem đáp án » 13/07/2024 120

Câu hỏi mới nhất

Xem thêm »
Xem thêm »