Câu hỏi:
17/07/2024 333
Biểu thức A = cos2α.cot2α + 3cos2α – cot2α + 2sin2 α bằng.
Biểu thức A = cos2α.cot2α + 3cos2α – cot2α + 2sin2 α bằng.
A. 1;
A. 1;
B. – 1;
B. – 1;
C. 2;
C. 2;
D. – 2;
D. – 2;
Trả lời:
Đáp án đúng là: C
Ta có: A = cos2α.cot2α + 3cos2α – cot2α +2sin2 α
\( = {\cos ^2}\alpha .\frac{{{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} - \frac{{{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} + 2{\sin ^2}\alpha + 3{\cos ^2}\alpha \)
\( = {\cos ^2}\alpha .\frac{{{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} - \frac{{{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} + 2\left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right) + {\cos ^2}\alpha \)
\( = \frac{{{{\cos }^4}\alpha }}{{{{\sin }^2}\alpha }} - \frac{{{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} + 2 + {\cos ^2}\alpha \)
\( = \frac{{{{\cos }^4}\alpha - {{\cos }^2}\alpha + {{\sin }^2}\alpha .{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} + 2\)
\( = \frac{{{{\cos }^2}\alpha ({{\sin }^2}\alpha + {{\cos }^2}\alpha ) - {{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} + 2\)
\( = \frac{{{{\cos }^2}\alpha - {{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} + 2\)
= 2.
Đáp án đúng là: C
Ta có: A = cos2α.cot2α + 3cos2α – cot2α +2sin2 α
\( = {\cos ^2}\alpha .\frac{{{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} - \frac{{{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} + 2{\sin ^2}\alpha + 3{\cos ^2}\alpha \)
\( = {\cos ^2}\alpha .\frac{{{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} - \frac{{{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} + 2\left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right) + {\cos ^2}\alpha \)
\( = \frac{{{{\cos }^4}\alpha }}{{{{\sin }^2}\alpha }} - \frac{{{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} + 2 + {\cos ^2}\alpha \)
\( = \frac{{{{\cos }^4}\alpha - {{\cos }^2}\alpha + {{\sin }^2}\alpha .{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} + 2\)
\( = \frac{{{{\cos }^2}\alpha ({{\sin }^2}\alpha + {{\cos }^2}\alpha ) - {{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} + 2\)
\( = \frac{{{{\cos }^2}\alpha - {{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} + 2\)
= 2.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tam giác ABC có các góc \(\widehat A = 75^\circ ,\widehat B = 45^\circ \). Tính tỉ số \(\frac{{AB}}{{AC}}\).
Tam giác ABC có các góc \(\widehat A = 75^\circ ,\widehat B = 45^\circ \). Tính tỉ số \(\frac{{AB}}{{AC}}\).
Câu 3:
Tam giác ABC có AB = 7; AC = 5 và \(\cos \left( {B + C} \right) = - \frac{1}{5}\). Tính BC
Câu 4:
Nếu 3cosx + 2 sinx = 2 và sinx < 0 thì giá trị đúng của sinx là:
Nếu 3cosx + 2 sinx = 2 và sinx < 0 thì giá trị đúng của sinx là:
Câu 6:
Tam giác ABC có các góc \(\widehat B = 30^\circ ,\widehat C = 45^\circ \), AB = 3. Tính cạnh AC.
Tam giác ABC có các góc \(\widehat B = 30^\circ ,\widehat C = 45^\circ \), AB = 3. Tính cạnh AC.
Câu 7:
Tam giác ABC có các cạnh a; b; c thỏa mãn điều kiện:
(a + b + c)(a + b – c) = 3ab. Khi đó số đo của góc C là.
Tam giác ABC có các cạnh a; b; c thỏa mãn điều kiện:
(a + b + c)(a + b – c) = 3ab. Khi đó số đo của góc C là.
Câu 9:
Kết quả rút gọn của biểu thức \(A = \frac{{\cos ( - 108^\circ ).\cot 72^\circ }}{{\tan ( - 162^\circ ).\sin 108^\circ }} - \tan 18^\circ \) là :
Kết quả rút gọn của biểu thức \(A = \frac{{\cos ( - 108^\circ ).\cot 72^\circ }}{{\tan ( - 162^\circ ).\sin 108^\circ }} - \tan 18^\circ \) là :
Câu 10:
Tam giác ABC có \(AC = 3\sqrt 3 \), AB = 3, BC = 6. Tính số đo góc B
Tam giác ABC có \(AC = 3\sqrt 3 \), AB = 3, BC = 6. Tính số đo góc B
Câu 13:
Hình bình hành có hai cạnh là 3 và 5, một đường chéo bằng 5. Tìm độ dài đường chéo còn lại.
Hình bình hành có hai cạnh là 3 và 5, một đường chéo bằng 5. Tìm độ dài đường chéo còn lại.
Câu 14:
Cho tan α = 2. Giá trị của \(A = \frac{{3\sin \alpha + \cos \alpha }}{{\sin \alpha - \cos \alpha }}\) là :
Cho tan α = 2. Giá trị của \(A = \frac{{3\sin \alpha + \cos \alpha }}{{\sin \alpha - \cos \alpha }}\) là :