Câu hỏi:
10/07/2024 94
b) Đường chéo AC’ đi qua trọng tâm G và G’ của hai tam giác BDA’ và B’D’C.
b) Đường chéo AC’ đi qua trọng tâm G và G’ của hai tam giác BDA’ và B’D’C.
Trả lời:
b) Gọi O, O’ lần lượt là tâm của hai đáy ABCD và A’B’C’D’.
Trong hình bình hành AA’C’C gọi I là giao điểm của AC’ và A’C; AC’ cắt A’O tại G1.
Trong tam giác AA’C, ta có G1 là giao điểm của hai trung tuyến AI và A’O nên G1 là trọng tâm của tam giác AA’C. Do đó
Mà G là trọng tâm của tam giác A’BD nên ta cũng có
Do đó G1 ≡ G hay ta xác định được G là giao điểm của AC’ và A’O.
Tương tự ta cũng xác định được trọng tâm G’ tam giác B’D’C là giao điểm của AC’ với CO’.
Vậy AC’ đi qua trọng tâm của hai tam giác BDA’ và B’D’C.
b) Gọi O, O’ lần lượt là tâm của hai đáy ABCD và A’B’C’D’.
Trong hình bình hành AA’C’C gọi I là giao điểm của AC’ và A’C; AC’ cắt A’O tại G1.
Trong tam giác AA’C, ta có G1 là giao điểm của hai trung tuyến AI và A’O nên G1 là trọng tâm của tam giác AA’C. Do đó
Mà G là trọng tâm của tam giác A’BD nên ta cũng có
Do đó G1 ≡ G hay ta xác định được G là giao điểm của AC’ và A’O.
Tương tự ta cũng xác định được trọng tâm G’ tam giác B’D’C là giao điểm của AC’ với CO’.
Vậy AC’ đi qua trọng tâm của hai tam giác BDA’ và B’D’C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của SA và CD.
a) Chứng minh (OMN) // (SBC).
Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của SA và CD.
a) Chứng minh (OMN) // (SBC).
Câu 2:
b) Giả sử hai tam giác SAD và SAB là các tam giác cân tại A. Gọi AE và AF lần lượt là đường phân giác trong của hai tam giác SAD và SAB. Chứng minh EF // (SBD).
b) Giả sử hai tam giác SAD và SAB là các tam giác cân tại A. Gọi AE và AF lần lượt là đường phân giác trong của hai tam giác SAD và SAB. Chứng minh EF // (SBD).
Câu 3:
c) Tìm giao điểm K của FI với giao tuyến vừa tìm được ở câu b, từ đó chứng minh (SBF) // (KCD).
c) Tìm giao điểm K của FI với giao tuyến vừa tìm được ở câu b, từ đó chứng minh (SBF) // (KCD).
Câu 4:
Cho hình chóp S.ABCD có đáy là hình thang ABCD, AD // BC, AD = 2BC. Gọi E, F, I lần lượt là trung điểm của các cạnh SA, AD, SD.
a) Chứng minh: (BEF) // (SCD) và CI // (BEF).
Cho hình chóp S.ABCD có đáy là hình thang ABCD, AD // BC, AD = 2BC. Gọi E, F, I lần lượt là trung điểm của các cạnh SA, AD, SD.
a) Chứng minh: (BEF) // (SCD) và CI // (BEF).
Câu 7:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và M, N lần lượt là trung điểm của AB, CD. (P) là mặt phẳng đi qua MN và song song với mặt phẳng (SAD). Tìm giao tuyến của các mặt của hình chóp với mặt phẳng (P).
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và M, N lần lượt là trung điểm của AB, CD. (P) là mặt phẳng đi qua MN và song song với mặt phẳng (SAD). Tìm giao tuyến của các mặt của hình chóp với mặt phẳng (P).