Trắc nghiệm Quy tắc đếm có đáp án (Phần 2)
Trắc nghiệm Quy tắc đếm có đáp án (Phần 2)
-
279 lượt thi
-
19 câu hỏi
-
20 phút
Danh sách câu hỏi
Câu 1:
18/07/2024Giả sử bạn muốn mua một áo sơ mi size S hoặc size M. Áo size S có 5 màu khác nhau, áo size M có 4 màu khác nhau. Hỏi có bao nhiêu sự lựa chọn (về màu áo và cỡ áo)?
Nếu chọn áo size S thì sẽ có 5 cách.
Nếu chọn áo size M thì sẽ có 4 cách.
Theo qui tắc cộng, ta có 5+ 4= 9 cách chọn mua áo.
Chọn đáp án A.
Câu 2:
18/07/2024Một người có 4 cái quần khác nhau, 6 cái áo khác nhau, 3 chiếc cà vạt khác nhau. Để chọn một cái quần hoặc một cái áo hoặc một cái cà vạt thì số cách chọn khác nhau là:
Nếu chọn một cái quần thì sẽ có 4 cách.
Nếu chọn một cái áo thì sẽ có 6 cách.
Nếu chọn một cái cà vạt thì sẽ có 3 cách.
Theo qui tắc cộng, ta có 4 + 6 + 3 = 13 cách chọn.
Chọn đáp án A.
Câu 3:
20/07/2024Trong một trường THPT, khối 11 có 280 học sinh nam và 325 học sinh nữ. Nhà trường cần chọn một học sinh ở khối 11 đi dự dạ hội của học sinh thành phố. Hỏi nhà trường có bao nhiêu cách chọn?
Nếu chọn một học sinh nam có 280 cách.
Nếu chọn một học sinh nữ có 325 cách.
Theo qui tắc cộng, ta có 280 + 325 = 605 cách chọn.
Chọn đáp án D.
Câu 4:
23/07/2024Trong một hộp chứa sáu quả cầu trắng được đánh số từ 1 đến 6 và ba quả cầu đen được đánh số 7, 8, 9. Có bao nhiêu cách chọn một trong các quả cầu ấy?
Vì các quả cầu trắng hoặc đen đều được đánh số phân biệt nên mỗi lần lấy ra một quả cầu bất kì là một lần chọn.
Nếu chọn một quả trắng có 6 cách.
Nếu chọn một quả đen có 3 cách.
Theo qui tắc cộng, ta có 6 + 3 = 9 cách chọn.
Chọn đáp án B.
Câu 5:
18/07/2024Giả sử từ tỉnh A đến tỉnh B có thể đi bằng các phương tiện: ô tô, tàu hỏa, tàu thủy hoặc máy bay. Mỗi ngày có 10 chuyến ô tô, 5 chuyến tàu hỏa, 3 chuyến tàu thủy và 2 chuyến máy bay. Hỏi có bao nhiêu cách đi từ tỉnh A đến tỉnh B?
Nếu đi bằng ô tô có 10 cách.
Nếu đi bằng tàu hỏa có 5 cách.
Nếu đi bằng tàu thủy có 3 cách.
Nếu đi bằng máy bay có 2 cách.
Theo qui tắc cộng, ta có 10 + 5+ 3+ 2= 20 cách chọn.
Chọn đáp án A.
Câu 6:
18/07/2024Có 3 kiểu mặt đồng hồ đeo tay (vuông, tròn, elip) và 4 kiểu dây (kim loại, da, vải và nhựa). Hỏi có bao nhiêu cách chọn một chiếc đồng hồ gồm một mặt và một dây?
Để chọn một chiếc đồng hồ, ta có:
Có 3 cách chọn mặt.
Có 4 cách chọn dây.
Vậy theo qui tắc nhân ta có:3.4 = 12 cách.
Chọn đáp án C.
Câu 7:
18/07/2024Một người có 4 cái quần, 6 cái áo, 3 chiếc cà vạt. Để chọn mỗi thứ một món thì có bao nhiều cách chọn bộ quần-áo-cà vạt khác nhau?
Để chọn một bộ "quần-áo-cà vạt", ta có:
Có 4 cách chọn quần.
Có 6 cách chọn áo.
Có 3 cách chọn cà vạt.
Vậy theo qui tắc nhân ta có : 4.6.3 = 72 cách.
Chọn đáp án B.
Câu 8:
18/07/2024Một bó hoa có 5 hoa hồng trắng, 6 hoa hồng đỏ và 7 hoa hồng vàng. Hỏi có mấy cách chọn lấy ba bông hoa có đủ cả ba màu.
Để chọn ba bông hoa có đủ cả ba màu (nghĩa là chọn một bông hoa hồng trắng- một bông hoa hồng đỏ- hoa hồng vàng), ta có:
Có 5 cách chọn hoa hồng trắng.
Có 6 cách chọn hoa hồng đỏ.
Có 7 cách chọn hoa hồng vàng.
Vậy theo qui tắc nhân ta có 5.6.7 = 210 cách.
Chọn đáp án B.
Câu 9:
18/07/2024Một người vào cửa hàng ăn, người đó chọn thực đơn gồm một món ăn trong năm món, một loại quả tráng miệng trong năm loại quả tráng miệng và một nước uống trong ba loại nước uống. Có bao nhiêu cách chọn thực đơn.
Để chọn thực đơn, ta có:
Có 5 cách chọn món ăn.
Có 5 cách chọn quả tráng miệng.
Có 3 cách chọn nước uống.
Vậy theo qui tắc nhân ta có 5.5.3 = 75 cách.
Chọn đáp án B.
Câu 10:
18/07/2024Có 10 cặp vợ chồng đi dự tiệc. Tổng số cách chọn một người đàn ông và một người phụ nữ trong bữa tiệc phát biểu ý kiến sao cho hai người đó không là vợ chồng?
Để chọn một người đàn ông và một người phụ nữ không là vợ chồng, ta có
Có 10 cách chọn người đàn ông.
Có 9 cách chọn người phụ nữ ( trừ 1 người là vợ của người đàn ông đã chọn trước đó).
Vậy theo qui tắc nhân ta có 10.9 = 90 cách.
Chọn đáp án D.
Câu 11:
23/07/2024Các thành phố A, B, C, D được nối với nhau bởi các con đường như hình vẽ. Hỏi có bao nhiêu cách đi từ A đến D mà qua B và C chỉ một lần?
Từ A đến B có 4 cách.
Từ B đến C có 2 cách.
Từ C đến D có 3 cách.
Vậy theo qui tắc nhân ta có 4.2.3 = 24 cách.
Chọn đáp án D.
Câu 12:
21/07/2024Trong một tuần bạn A dự định mỗi ngày đi thăm một người bạn trong 12 người bạn của mình. Hỏi bạn A có thể lập được bao nhiêu kế hoạch đi thăm bạn của mình (thăm một bạn không quá một lần)?
Một tuần có bảy ngày và mỗi ngày thăm một bạn.
Có 12 cách chọn bạn vào ngày thứ nhất.
Có 11 cách chọn bạn vào ngày thứ hai ( khác bạn ngày thứ nhất).
Có 10 cách chọn bạn vào ngày thứ ba ( khác bạn ngày thứ nhất, thứ 2)
Có 9 cách chọn bạn vào ngày thứ tư.
Có 8 cách chọn bạn vào ngày thứ năm.
Có 7 cách chọn bạn vào ngày thứ sáu.
Có 6 cách chọn bạn vào ngày thứ bảy.
Vậy theo qui tắc nhân ta có 12.11.10.9.8.7.6 = 3 991 680 cách.
Chọn đáp án A.
Câu 13:
18/07/2024Số 253125000 có bao nhiêu ước số tự nhiên?
Ta có nên mỗi ước số tự nhiên của số đã cho đều có dạng trong đó sao cho
Có 4 cách chọn m;
Có 5 cách chọn n;
Có 9 cách chọn p;
Vậy theo qui tắc nhân ta có: 4.5.9 = 180 ước số tự nhiên.
Chọn đáp án C.
Câu 14:
18/07/2024Từ các chữ số 1; 5; 6; 7 có thể lập được bao nhiêu chữ số tự nhiên có 4 chữ số (không nhất thiết phải khác nhau) ?
Gọi số cần tìm có dạng với
Vì số cần tìm có 4 chữ số không nhất thiết khác nhau nên:
a được chọn từ tập A (có 4 phần tử) nên có 4 cách chọn.
b được chọn từ tập A (có 4 phần tử) nên có 4 cách chọn.
c được chọn từ tập A (có 4 phần tử) nên có 4 cách chọn.
d được chọn từ tập A (có 4 phần tử) nên có 4 cách chọn.
Như vậy, ta có 4.4.4.4 = 256 số cần tìm.
Chọn đáp án B.
Câu 15:
18/07/2024Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu chữ số tự nhiên bé hơn 100 ?
Các số bé hơn 100 chính là các số có một chữ số và hai chữ số được hình thành từ tập
Từ tập A có thể lập được 6 số có một chữ số.
Gọi số có hai chữ số có dạng với
Trong đó:
a được chọn từ tập A (có 6 phần tử) nên có 6 cách chọn.
b được chọn từ tập A (có 6 phần tử) nên có 6 cách chọn.
Như vậy, ta có 6.6 = 36 số có hai chữ số.
Vậy, từ A có thể lập được 6+ 36 = 42 số tự nhiên bé hơn 100.
Chọn đáp án D.
Câu 16:
22/07/2024Từ các chữ số 0; 1; 2; 3 ;4; 5 có thể lập được bao nhiêu số lẻ gồm 4 chữ số khác nhau ?
Gọi số cần tìm có dạng với
Vì là số lẻ có 3 cách chọn.
Khi đó, a có 4 cách chọn (khác 0 và d),.
b có 4 cách chọn và c có 3 cách chọn.
Vậy có tất cả 3.4.4.3 = 144 số cần tìm.
Chọn đáp án C.
Câu 17:
18/07/2024Từ các chữ số 0; 1; 2; 3; 4; 5 có thể lập được bao nhiêu số chẵn gồm 4 chữ số khác nhau ?
Gọi số cần tìm có dạng với
Vì là số chẵn
TH1. Nếu d= 0, số cần tìm là Khi đó:
a được chọn từ tập nên có 5 cách chọn.
b được chọn từ tập nên có 4 cách chọn.
c được chọn từ tập nên có 3 cách chọn.
Như vậy, ta có 5.4.3 = 60 số có dạng
TH2. Nếu có 2 cách chọn.
Khi đó, a có 4 cách chọn (khác 0 và d),
b có 4 cách chọn và c có 3 cách chọn.
Như vậy, ta có 2.4.4.3 = 96 số cần tìm như trên.
Vậy có tất cả 60 +96 = 156 số cần tìm.
Chọn đáp án A.
Câu 18:
22/07/2024Các thành phố A,B,C,D được nối với nhau bằng các con đường như hình vẽ:
Số cách đi từ thành phố A đến D, rồi quay lại A là:
+ Ta tính số cách đi từ A đến D:
Đi từ A đến B có 4 cách
Đi từ B đến C có 3 cách
Đi từ C đến D có 5 cách
Do đó, số cách đi từ A đến D là 4.3.5 = 60 cách
+ Tương tự, số cách đi từ D đến A là 60.
Do đó, số cách đi từ A đến D rồi quay về A là 60. 60=3600
Chọn B
Câu 19:
21/07/2024Một học sinh có 4 quyển sách Toán khác nhau và 5 quyển sách Ngữ văn khác nhau. Hỏi có bao nhiêu cách xếp 9 quyển sách trên giá sách sao cho hai quyển sách kề nhau phải khác loại?
Để xếp 9 quyển sách trên giá sách sao cho hai quyển sách kề nhau phải khác loại thì các quyển sách môn văn xếp vào vị trí lẻ, quyển toán xếp vào vị trí chẵn.
Xếp theo thứ tự: ngữ văn- toán- ngữ văn- toán- ngữ văn- toán-ngữ văn-toán- ngữ văn.
Vậy có 5.4.4.3.3.2.2.1=2880 cách
Chọn B
Có thể bạn quan tâm
- Trắc nghiệm Quy tắc đếm (có đáp án) (711 lượt thi)
- Trắc nghiệm Quy tắc đếm có đáp án (337 lượt thi)
- Trắc nghiệm Quy tắc đếm có đáp án (Phần 2) (278 lượt thi)
- Trắc nghiệm Quy tắc đếm có đáp án (Nhận biết) (296 lượt thi)
- Trắc nghiệm Quy tắc đếm có đáp án (Thông hiểu) (758 lượt thi)
- Trắc nghiệm Quy tắc đếm có đáp án (Vận dụng) (399 lượt thi)
Các bài thi hot trong chương
- 100 câu trắc nghiệm Tổ hợp - Xác suất cơ bản (P1) (1894 lượt thi)
- 100 câu trắc nghiệm Tổ hợp - Xác suất nâng cao (P1) (1402 lượt thi)
- Trắc nghiệm Nhị thức Niu-tơn (có đáp án) (926 lượt thi)
- Trắc nghiệm Hoán vị - Chỉnh hợp - Tổ hợp (có đáp án) (892 lượt thi)
- Trắc nghiệm Nhị thức Niu-tơn có đáp án (Thông hiểu) (829 lượt thi)
- Trắc nghiệm Hoán vị - Chỉnh hợp - Tổ hợp có đáp án (Thông hiểu) (787 lượt thi)
- Trắc nghiệm Phép thử và biến cố (có đáp án) (719 lượt thi)
- Trắc nghiệm Xác suất của biến cố (có đáp án) (641 lượt thi)
- Trắc nghiệm tổng hợp Chương 2 : Tổ hợp - Xác suất có đáp án (Phần 1) (628 lượt thi)
- Trắc nghiệm Ôn chương 2 (có đáp án) (533 lượt thi)