Trang chủ Lớp 11 Toán Trắc nghiệm Phép thử và biến cố có đáp án (Thông hiểu)

Trắc nghiệm Phép thử và biến cố có đáp án (Thông hiểu)

Trắc nghiệm Phép thử và biến cố có đáp án (Thông hiểu)

  • 341 lượt thi

  • 15 câu hỏi

  • 30 phút

Danh sách câu hỏi

Câu 1:

18/07/2024

Một người chọn ngẫu nhiên hai chiếc giày từ bốn đôi giày cỡ khác nhau. Xác suất để hai chiếc chọn được tạo thành một đôi là:

Xem đáp án

Đáp án cần chọn là: C

 

Gọi A là biến cố: “hai chiếc chọn được tạo thành một đôi.”

Số cách chọn 2 trong 8 chiếc giày là C82=28.

Số cách chọn 1 đôi giày trong 4 đôi giày là C41=4.

=> n(A)=C41=4.

=>P(A)=n(A)n(Ω)=428=17.


Câu 2:

18/07/2024

Có 2 hộp bút chì màu. Hộp thứ nhất có 5 bút chì màu đỏ và 7 bút chì màu xanh. Hộp thứ hai có có 8 bút chì màu đỏ và 4 bút chì màu xanh. Chọn ngẫu nhiên mỗi hộp một cây bút chì. Xác suất để có 1 cây bút chì màu đỏ và 1 cây bút chì màu xanh là:

Xem đáp án

Đáp án cần chọn là: A

 

Gọi A là biến cố: “có 1 cây bút chì màu đỏ và 1 cây bút chì màu xanh“

Mỗi hộp có 12 bút chì.

- Không gian mẫu:|Ω|=C121.C121=144.

- Số cách chọn được 1 bút đỏ ở hộp 1, 1 bút xanh ở hộp 2 là: C51.C41

- Số cách chọn được 1 bút đỏ ở hộp 2, 1 bút xanh ở hộp 1 là: C81.C71

=>n(A)=C51.C41+C81.C71=76.

=>P(A)= n(A)Ω=76144=1936.


Câu 3:

19/11/2024

Gieo đồng xu cân đối và đồng chất 5 lần liên tiếp. Xác suất để được ít nhất một lần xuất hiện mặt sấp là:

Xem đáp án

Đáp án đúng là: A

*Lời giải:    

Ta có: n(Ω)=25=32.

Biến cố A:”Được ít nhất một lần xuất hiện mặt sấp”.

Khi đó:  A:”Tất cả đều là  mặt ngửa”.

Suy ra P(A)=132P(A)=1-P(A¯)=1-132=3132.

*Phương pháp giải:

- Xác định đúng không gian mẫu.

- Áp dụng Hoán vị: Pn = n(n-1)...2.1 = n!

*Lý thuyến cần nắm về tổ hợp - xác suất

1. Quy tắc cộng: Một công việc được hoàn thành bởi một trong hai hành động. Nếu hành động này có m cách thực hiện, hành động kia có n cách thực hiện không trùng với bất kì cách nào của hành động thứ nhất thì công việc đó có m+n cách thực hiện.

2. Quy tắc nhân: Một công việc được hoàn thành bởi hai hành động liên tiếp. Nếu có m cách thực hiện hành động thứ nhất và ứng với mỗi cách đó có n cách thực hiện hành động thứ hai thì có m.n cách hoàn thành công việc.

3. Hoán vị:

Cho tập hợp A gồm n phần tử (n ≥ 1).

- Mỗi kết quả của sự sắp xếp thứ tự n phần tử của tập hợp A được gọi là một hoán vị của n phần tử.

- Số các hoán vị của n phần tử là: Pn = n(n-1)...2.1 = n!

4. Chỉnh hợp:

Cho tập hợp A gồm n phần tử (n ≥ 1).

- Kết quả của việc lấy k phần tử khác nhau từ n phần tử của tập hợp A và sắp xếp chúng theo một thứ tự nào đó được gọi là một chỉnh hợp chập k của n phần tử đã cho.

- Số các chỉnh hợp chập k của n phần tử là:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

5. Tổ hợp:

Giả sử A có n phần tử (n ≥ 1).

- Mỗi tập hợp gồm k phần tử của A được gọi là một tổ hợp chập k của n phần tử đã cho. (1 ≤ k ≤ n).

Số các tổ hợp chập k của n phần tử là:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

6. Công thức nhị thức Niu-tơn:

    (a + b)n = Cn0an + Cn1an - 1b + … + Cnkan - kbk + … + Cnn-1abn-1 + Cnnbn

7. Phép toán trên các biến cố:

- Giả sử A là biến cố liên quan đến một phép thử.

Khi đó, tập Ω\A được gọi là biến cố đối của biến cố A, kí hiệu là A.

- Giả sử A và B là hai biến cố liên quan đến một phép thử:

    + Tập A ⋃ B được gọi là hợp của các biến cố A và B.

    + Tập A ⋂ B được gọi là giao của các biến cố A và B.

    + Nếu A ⋂ B = ∅ thì ta nói A và B xung khắc.

8. Xác suất của biến cố:

Giả sử A là biến cố liên quan đến phép thử chỉ có một số hữu hạn kết quả đồng khả năng xuất hiện. Khi đó, xác suất của biến cố A là: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

trong đó: n(A) là số phần tử của A; còn n(Ω) là số các kết quả có thể xảy ra của phép thử.

9. Tính chất của xác suất:

Giả sử A và B là các biến cố liên quan đến một phép thử có một số hữu hạn kết quả đồng khả năng xuất hiện.

    P(∅) = 0, P(Ω) = 1

    0 ≤ P(A) ≤ 1, với mọi biến cố A.

    Nếu A và B xung khắc, thì P(AB) = P(A) + P(B) (công thức cộng xác suất)

    Với mọi biến cố A, ta có: P(A) = 1 – P(A).

    A và B là hai biến cố độc lập khi và chỉ khi P(A.B) = P(A).P(B).

Xem thêm các bài viết liên quan hay, chi tiết

Lý thuyết Tổ hợp - xác suất hay, chi tiết 

Giải Toán 11 Chương 2: Tổ hợp – xác suất 

Các dạng bài tập Tổ hợp - Xác suất 


Câu 4:

23/07/2024

Một hộp chứa 5 viên bi màu trắng, 15 viên bi màu xanh và 35 viên bi màu đỏ. Lấy ngẫu nhiên từ hộp ra 7 viên bi. Xác suất để trong số 7 viên bi được lấy ra có ít nhất 1 viên bi màu đỏ là:

Xem đáp án

Đáp án cần chọn là: B

Có tất cả :  5+ 15 + 35 = 55 viên bi.

Gọi A là biến cố: “trong số 7 viên bi được lấy ra có ít nhất 1 viên bi màu đỏ.”

- Số cách chọn 7 trong 55 viên bi là C557

A là biến cố: “trong số 7 viên bi được lấy ra không có viên bi màu đỏ nào.”

n(A¯)=C207n(A)=n(Ω)-n(A¯)=C557-C207P(A)=C557-C207C557


Câu 5:

23/07/2024

Một bình đựng 12 quả cầu được đánh số từ 1 đến 12. Chọn ngẫu nhiên bốn quả cầu. Xác suất để bốn quả cầu được chọn có số đều không vượt quá 8.

Xem đáp án

Đáp án cần chọn là: C

Gọi A là biến cố: “bốn quả cầu được chọn có số đều không vượt quá 8.”

Số cách chọn 4 trong số 12 quả cầu là n(Ω)=C124=495.

Số cách chọn 4 trong số 8 số từ 1 đến 8 là n(A)=C84=70.

P(A)=n(A)n(Ω)=70495=1499.


Câu 6:

18/07/2024

Một nhóm gồm 8 nam và 7 nữ. Chọn ngẫu nhiên 5 bạn. Xác suất để trong 5 bạn được chọn có cả nam lẫn nữ mà nam nhiều hơn nữ là:

Xem đáp án

Đáp án cần chọn là: B

Gọi A là biến cố: “5 bạn được chọn có cả nam lẫn nữ mà nam nhiều hơn nữ “

- Không gian mẫu: |Ω|=C155

- Số cách chọn 5 bạn trong đó có 4 nam, 1 nữ là: C84.C71

- Số cách chọn 5 bạn trong đó có 3 nam, 2 nữ là: C83.C72

=>n(A)=C84.C71+C83.C72=1666.

=>P(A)=n(A)Ω=1666C155=238429.


Câu 7:

18/07/2024

Gieo một con xúc sắc cân đối và đồng chất 5 lần liên tiếp. Tính xác suất để tổng số chấm ở hai lần gieo đầu bằng số chấm ở lần gieo thứ ba.

Xem đáp án

Đáp án cần chọn là: B

Ta có: n(Ω)=65

Bộ kết quả của ba lần gieo đầu thỏa mãn yêu cầu là:

(1;1;2),(1;2;3),(1;3;4),(1;4;5),(1;5;6),(2;1;3),(2;2;4),(2;3;5),(2;4;6),(3;1;4),(3;2;5),(3;3;6),(4;1;5),(4;2;6),(5;1;6)

Hai lần gieo sau mỗi lần gieo có 6 khả năng xảy ra nên n(A)=15.6.6

VậyP(A)=n(A)n(Ω)=15.6.665=15216.

Chú ý

Một số em có thể sẽ chọn nhầm đáp án D vì chỉ liệt kê ra 15 khả năng có thể xảy ra của A mà quên mất hai lần gieo cuối là sai.


Câu 8:

18/07/2024

Gieo ba con súc sắc. Xác suất để được nhiều nhất hai mặt 5 là.

Xem đáp án

Đáp án cần chọn là: D

Số phần tử của không gian mẫu là: n(Ω)=63

Gọi A là biến cố “Xuất hiện nhiều nhất 2 mặt 5” hay A: “Xuất hiện không quá hai mặt 5”.

Khi đó :A “Xuất hiện cả ba mặt đều là 5”.

n(A)=1P(A)=1216.

Xác suất biến cố A là : P(A)=1-P(A)=1-1216=215216.


Câu 9:

22/07/2024

Một tiểu đội có 10 người được xếp ngẫu nhiên thành hàng dọc, trong đó có anh A và anh B. Xác suất để A và B đứng liền nhau bằng:

Xem đáp án

Đáp án cần chọn là: D

Gọi A là biến cố: “A và B đứng liền nhau.”

- Số phần tử của không gian mẫu: 10!.

Coi hai anh A và B là một nhóm thì có 2! cách xếp chỗ cho A và B trong nhóm.

Xếp nhóm anh A và B với 8 người còn lại thì có 9! cách xếp.

Số cách xếp để anh A và anh B đứng liền nhau là:  n(A)=2!.9!.

=>P(A)=n(A)Ω=2!.9!10!=15.


Câu 10:

18/07/2024

Có 5 nam, 5 nữ xếp thành một hàng dọc. Tính xác suất để nam, nữ đứng xen kẽ nhau.

Xem đáp án

Chọn B.

 

Gọi A là biến cố: “nam, nữ đứng xen kẽ nhau.“

-Số phần tử của không gian mẫu: n(Ω)=10!

-Số cách xếp để nam đứng đầu và nam nữ đứng xen kẽ nhau là: 5!.5!

-Số cách xếp để nữ đứng đầu và nam nữ đứng xen kẽ nhau là: 5!.5!

=> n(A)=5!.5!+5!.5!=28800.

=>P(A)= n(A)Ω=2880010!=1126.


Câu 11:

23/07/2024

Gieo một con xúc xắc cân đối đồng chất 2 lần, tính xác suất để biến cố có tích 2 lần số chấm khi gieo xúc xắc là một số chẵn.

Xem đáp án

Chọn C.

Số phần tử của không gian mẫu là Ω=6.6=36

Gọi A là biến cố Tích hai lần số chấm khi gieo xúc xắc là một số chẵn. Ta xét các trường hợp:

TH1. Gieo lần một, số chấm xuất hiện trên mặt là số lẻ thì khi gieo lần hai, số chấm xuất hiện phải là số chẵn. Khi đó có 3.3 = 9 cách gieo.

TH2. Gieo lần một, số chấm xuất hiện trên mặt là số chẵn thì có hai trường hợp xảy ra là số chấm xuất hiện trên mặt khi gieo lần hai là số lẻ hoặc số chẵn.

 Khi đó có 3.3 + 3.3 = 18 cách gieo.

Suy ra số kết quả thuận lợi cho biến cố là Ω=9+18=27

Vậy xác suất cần tìm tính P(A)=2736=0,75.


Câu 12:

20/07/2024

Một hộp có 5 viên bi đỏ, 3 viên bi vàng và 4 viên bi xanh. Chọn ngẫu nhiên từ hộp 4 viên bi, tính xác suất để 4 viên bi được chọn có số bi đỏ lớn hơn số bi vàng và nhất thiết phải có mặt bi xanh.

Xem đáp án

Chọn C.

Không gian mẫu là số cách chọn ngẫu nhiên 4 viên bi từ hộp chứa 12 viên bi. Suy ra số phần tử của không gian mẫu là Ω=C124.

Gọi A là biến cố 4 viên bi được chọn có số bi đỏ lớn hơn số bi vàng và nhất thiết phải có mặt bi xanh . Ta có các trường hợp thuận lợi cho biến cố A là:

  • TH1: Chọn 1 bi đỏ và 3 bi xanh nên có C51.C43 cách.
  • TH2: Chọn 2 bi đỏ và 2 bi xanh nên có C52.C42 cách.
  • TH3: Chọn 3 bi đỏ và 1 bi xanh nên có C53.C41 cách.
  • TH4: Chọn 2 bi đỏ, 1 bi vàng và 1 bi xanh nên có C52.C31.C41cách.

Suy ra số phần tử của biến cố A là Ω=C51.C43+C52.C42+C52.C31.C41=240.

Vậy xác suất cần tính P(A)=ΩAΩ=240495=1633.


Câu 13:

21/07/2024

Có 13 học sinh của một trường THPT đạt danh hiệu học sinh xuất sắc trong đó khối 12 có 8 học sinh nam và 3 học sinh nữ, khối 11 có 2 học sinh nam. Chọn ngẫu nhiên 3 học sinh bất kỳ để trao thưởng, tính xác suất để 3 học sinh được chọn có cả nam và nữ đồng thời có cả khối 11 và khối 12.

Xem đáp án

Chọn A.

Không gian mẫu là số cách chọn ngẫu nhiên 3 học sinh từ 13 học sinh.

Suy ra số phần tử của không gian mẫu là Ω=C133=286.

Gọi A là biến cố 3 học sinh được chọn có cả nam và nữ đồng thời có cả khối 11 và khối 12 . Ta có các trường hợp thuận lợi cho biến cố A là:

  • TH1: Chọn 1 học sinh khối 11; 1 học sinh nam khối 12 và 1 học sinh nữ khối 12 nên có C21.C81.C31=48 cách.
  • TH2: Chọn 1 học sinh khối 11; 2 học sinh nữ khối 12 có C21.C32=6 cách.
  • TH3: Chọn 2 học sinh khối 11; 1 học sinh nữ khối 12 có C22.C31=3 cách.

Suy ra số phần tử của biến cố A là Ω=48+6+3=57.

Vậy xác suất cần tính P(A)=ΩAΩ=57286.


Câu 14:

18/07/2024

Một chiếc hộp đựng 7 viên bi màu xanh, 6 viên bi màu đen, 5 viên bi màu đỏ, 4 viên bi màu trắng. Chọn ngẫu nhiên ra 4 viên bi, tính xác suất để lấy được ít nhất 2 viên bi cùng màu.

Xem đáp án

Chọn B.

Không gian mẫu là số cách chọn ngẫu nhiên 4 viên bi từ 22 viên bi đã cho.

Suy ra số phần tử của không gian mẫu là Ω=C224=7315.

Gọi A là biến cố Lấy được 4 viên bi trong đó có ít nhất hai viên bi cùng màu .

Để tìm số phần tử của A, ta đi tìm số phần tử của biến cố A¯, với biến cố A¯ là lấy được 4 viên bi trong đó không có hai viên bi nào cùng màu.

Suy ra số phần tử của biến cố A¯ là ΩA=C71.C61.C51.C41=840.

Suy ra số phần tử của biến cố A là ΩA=Ω-ΩA=6475.

Vậy xác suất cần tính P(A)=ΩAΩ=64757315=185209.


Câu 15:

22/07/2024

Một hộp đựng 8 quả cầu trắng, 12 quả cầu đen. Lần thứ nhất lấy ngẫu nhiên 1 quả cầu trong hộp, lần thứ hai lấy ngẫu nhiên 1 quả cầu trong các quả cầu còn lại. Tính xác suất để kết quả của hai lần lấy được 2 quả cầu cùng màu.

Xem đáp án

Chọn C.

Không gian mẫu là lấy 2 quả cầu trong hộp một cách lần lượt ngẫu nhiên.

Suy ra số phần tử của không gian mẫu là Ω=C201.C191.

Gọi A biến cố "2 quả cầu được lấy cùng màu" . Ta có các trường hợp thuận lợi cho biến cố A như sau:

  • TH1: Lần thứ nhất lấy quả màu trắng và lần thứ hai cũng màu trắng.

Do đó trường hợp này có C81.C71 cách.

  • TH2: Lần thứ nhất lấy quả màu đen và lần thứ hai cũng màu đen.

Do đó trường hợp này có C121.C111 cách.

Suy ra số phần tử của biến cố A là ΩA=C81.C71+C121.C111.

Vậy xác suất cần tính P(A)=ΩAΩ=C81.C71+C121.C112C201.C191=4795.


Bắt đầu thi ngay