Cho hai tam giác vuông cân OAB và OA’B’ có chung đỉnh O sao cho O nằm trên đoạn AB’

Lời giải Bài 5 trang 29 Chuyên đề Toán 11 sách Chuyên đề học tập Toán lớp 11 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng trả lời các câu hỏi & làm bài tập.

1 371 03/07/2023


Giải Chuyên đề Toán 11 Chân trời sáng tạo Bài 5: Phép quay

Bài 5 trang 29 Chuyên đề Toán 11: Cho hai tam giác vuông cân OAB và OA’B’ có chung đỉnh O sao cho O nằm trên đoạn AB’ và nằm ngoài đoạn A’B. Gọi G và G’ lần lượt là trọng tâm của ∆OAA’ và ∆OBB’. Chứng minh rằng ∆OGG’ là tam giác vuông cân.

Lời giải:

Bài 5 trang 29 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Do DOAB là tam giác vuông cân nên OA = OB và AOB^=90°.

Do DOA’B’ là tam giác vuông cân nên OA’ = OB’ và A'OB'^=90°.

Phép quay tâm O, góc quay 90° biến:

⦁ Điểm O thành điểm O;

⦁ Điểm A thành điểm B;

⦁ Điểm A’ thành điểm B’.

Do đó ảnh của ∆OAA’ qua phép quay tâm O, góc quay 90° là ∆OBB’.

Mà G, G’ lần lượt là trọng tâm của ∆OAA’ và ∆OBB’.

Vì vậy ảnh của G qua phép quay tâm O, góc quay 90° là G’.

Suy ra OG = OG’ và GOG'^=OG,OG'=90°.

DOGG’ có OG = OG’ và GOG'^=90° nên là tam giác vuông cân tại O.

Vậy ∆OGG’ vuông cân tại O.

1 371 03/07/2023


Xem thêm các chương trình khác: