Cho hai điểm B, C cố định trên đường tròn (O; R) và một điểm A thay đổi trên đường tròn đó

Lời giải Bài 4 trang 14 Chuyên đề Toán 11 sách Chuyên đề học tập Toán lớp 11 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng trả lời các câu hỏi & làm bài tập.

1 601 03/07/2023


Giải Chuyên đề Toán 11 Chân trời sáng tạo Bài 2: Phép tịnh tiến

Bài 4 trang 14 Chuyên đề Toán 11: Cho hai điểm B, C cố định trên đường tròn (O; R) và một điểm A thay đổi trên đường tròn đó. Chứng minh trực tâm H của tam giác ABC luôn nằm trên một đường tròn cố định.

Lời giải:

Bài 4 trang 14 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Kẻ đường kính BB’.

Do B, C cố định trên (O) nên B’, C cũng cố định trên (O).

Suy ra B'C là vectơ không đổi.

Ta có BCB'^=90° (góc nội tiếp chắn nửa đường tròn (O)).

Suy ra BC ⊥ B’C.

Mà AH ⊥ BC (do H là trực tâm của ∆ABC).

Do đó AH // B’C (1)

Chứng minh tương tự, ta được AB’ // CH (2)

Từ (1), (2), suy ra tứ giác AHCB’ là hình bình hành.

Suy ra AH = B’C.

Mà AH // B’C (chứng minh trên).

Vì vậy AH=B'C.

Do đó H=TB'CA.

Vậy khi A thay đổi trên đường tròn (O) thì trực tâm H của tam giác ABC luôn nằm trên ảnh của đường tròn (O) là đường tròn (O’) qua TB'C.

1 601 03/07/2023


Xem thêm các chương trình khác: