Cho phép tịnh tiến vecto u trong đó vcto u(3;5). Tìm ảnh của các điểm A(–3; 4), B(2; –7)

Lời giải Bài 3 trang 14 Chuyên đề Toán 11 sách Chuyên đề học tập Toán lớp 11 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng trả lời các câu hỏi & làm bài tập.

1 535 03/07/2023


Giải Chuyên đề Toán 11 Chân trời sáng tạo Bài 2: Phép tịnh tiến

Bài 3 trang 14 Chuyên đề Toán 11: Cho phép tịnh tiến Tu trong đó u=3;5.

a) Tìm ảnh của các điểm A(–3; 4), B(2; –7) qua Tu.

b) Biết rằng M’(2; 6) là ảnh của điểm M qua Tu. Tìm tọa độ của điểm M.

c) Tìm ảnh của đường thẳng d: 4x – 3y + 7 = 0 qua Tu.

Lời giải:

a) Đặt A'x';y'=TuA.

Suy ra AA'=u, mà AA'=x'+3;y'4

Do đó x'+3=3y'4=5

Vì vậy x'=0y'=9

Suy ra tọa độ A’(0; 9).

Đặt B'x'';y''=TuB.

Suy ra BB'=u, mà BB'=x''2 ; y''+7

Do đó x''2=3y''+7=5

Vì vậy x''=5y''=2

Suy ra tọa độ B’(5; –2).

Vậy ảnh của các điểm A, B qua Tu lần lượt là các điểm A’(0; 9), B’(5; –2).

b) Gọi M(xM; yM).

Theo đề, ta có M'=TuM.

Suy ra MM'=u, mà MM'=2-xM ; 6-yM

Do đó 2xM=36yM=5

Vì vậy xM=1yM=1

Vậy tọa độ M(–1; 1) thỏa mãn yêu cầu bài toán.

c) Chọn điểm N(–1; 1) ∈ d: 4x – 3y + 7 = 0.

Gọi N’(x’; y’) lần lượt là ảnh của N qua Tu.

Ta có TuN=N', suy ra NN'=u với NN'=x'+1;y'1

Do đó x'+1=3y'1=5

Vì vậy x'=2y'=6

Suy ra tọa độ N’(2; 6).

Đường thẳng d: 4x – 3y + 7 = 0 có vectơ pháp tuyến nd=4;3.

Gọi d’ là ảnh của d qua Tu, do đó d’ song song hoặc trùng với d nên d’ nhận nd=4;3 làm vectơ pháp tuyến.

Ta có d’ là đường thẳng đi qua M’(2; 6) và có vectơ pháp tuyến nd=4;3 nên có phương trình là:

4(x – 2) – 3(y – 6) = 0 hay 4x – 3y + 10 = 0.

Vậy ảnh của đường thẳng d: 4x – 3y + 7 = 0 qua Tu là đường thẳng d’: 4x – 3y + 10 = 0.

1 535 03/07/2023


Xem thêm các chương trình khác: