Cho đường tròn (C) tâm F1, bán kính r và một điểm F2 thoả mãn F1F2 = 4r

Lời giải Bài 3 trang 55 sách Chuyên đề Toán lớp 10 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng trả lời các câu hỏi & làm bài tập.

1 431 08/11/2022


Giải Chuyên đề Toán 10 Chân trời sáng tạo Bài 2: Hypebol

Bài 3 trang 55 Chuyên đề Toán 10: Cho đường tròn (C) tâm F1, bán kính r và một điểm F2 thoả mãn F1F2 = 4r.

a) Chứng tỏ rằng tâm của các đường tròn đi qua F2 và tiếp xúc với (C) nằm trên một đường hypebol (H).

b) Viết phương trình chính tắc và tìm tâm sai của (H).

Lời giải:

a) Gọi (C'; r') là đường tròn đi qua F2 và tiếp xúc với (C);

I(x; y) là tâm của đường tròn đi qua F2 và tiếp xúc với (C).

Vì F2 nằm ngoài (C) nên (C') tiếp xúc ngoài với (C) hoặc (C') tiếp xúc trong với (C) và (C) nằm trong (C').

+) Nếu (C') tiếp xúc ngoài với (C) thì r' + r = IF1  IF2 + r = IF1  IF1 – IF2 = r

+) Nếu (C') tiếp xúc trong với (C) và (C) nằm trong (C') thì r' – r = IF1  IF2 – r = IF1

 IF2 – IF1 = r.

Vậy ta luôn có |IF2 – IF1| = r trong cả hai trường hợp

 I nằm trên hypebol có hai tiêu điểm là F1, F2 và độ dài trục thực là r.

b) Chọn hệ trục toạ độ sao cho gốc toạ độ trùng với trung điểm của F1F2 và F1, F2 đều nằm trên trục Ox.

Giả sử phương trình chính tắc của hypebol này là x2a2y2b2=1 (a > 0, b > 0).

Khi đó ta có 2a = r, suy ra a = r2

F1F2 = 4r, suy ra c = 2r, suy ra b2=c2a2=2r2r22=15r24.

Vậy phương trình chính tắc của hypebol này là x2r24y215r24=1.

Xem thêm lời giải bài tập Chuyên đề Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Khám phá 1 trang 50 Chuyên đề Toán 10: Cho hypebol (H) với phương trình chính tắc x2a2y2b2=1 và điểm M(x0; y0)...

Thực hành 1 trang 51 Chuyên đề Toán 10: Viết phương trình chính tắc của hypebol có kích thước của hình chữ nhật cơ sở là 8 và 6...

Vận dụng 1 trang 51 Chuyên đề Toán 10: Khi bay với vận tốc siêu thanh (tốc độ chuyển động lớn hơn tốc độ âm thanh trong cùng môi trường)...

Khám phá 2 trang 52 Chuyên đề Toán 10: Cho điểm M(x; y) nằm trên hypebol (H):x2a2y2b2=1. a) Chứng minh rằng F1M2 – F2M2 = 4cx...

Thực hành 2 trang 53 Chuyên đề Toán 10: Tính độ dài hai bán kính qua tiêu của điểm M(x; y) trên hypebol (H):x264y236=1...

Vận dụng 2 trang 53 Chuyên đề Toán 10: Tính độ dài hai bán kính qua tiêu của đỉnh A2(a; 0) trên hypebol (H): x2a2y2b2=1...

Khám phá 3 trang 53 Chuyên đề Toán 10: Cho hypebol (H):x2a2y2b2=1. Chứng tỏ rằng ca>1...

Thực hành 3 trang 53 Chuyên đề Toán 10: Tìm tâm sai của các hypebol sau: a) H1:x24y21=1...

Vận dụng 3 trang 53 Chuyên đề Toán 10: Cho hypebol (H) có tâm sai bằng 2. Chứng minh trục thực và trục ảo của (H)...

Vận dụng 4 trang 53 Chuyên đề Toán 10: Một vật thể có quỹ đạo là một nhánh của hypebol (H), nhận tâm Mặt Trời...

Khám phá 4 trang 54 Chuyên đề Toán 10: Cho điểm M(x; y) trên hypebol (H):x2a2y2b2=1 và hai đường thẳng...

Thực hành 4 trang 55 Chuyên đề Toán 10: Tìm toạ độ hai tiêu điểm và viết phương trình hai đường chuẩn tương ứng của các hypebol sau: a) H1:x24y21=1...

Vận dụng 5 trang 55 Chuyên đề Toán 10: Lập phương trình chính tắc của hypebol có tiêu cự bằng 26 và khoảng cách...

Bài 1 trang 55 Chuyên đề Toán 10: Cho hypebol (H):x2144y225=1. a) Tìm tâm sai và độ dài...

Bài 2 trang 55 Chuyên đề Toán 10: Lập phương trình chính tắc của hypebol có tiêu cự bằng 20 và khoảng cách...

Bài 4 trang 55 Chuyên đề Toán 10: Trong hoạt động mở đầu bài học, cho biết khoảng cách giữa hai trạm vô tuyến là 600 km...

Xem thêm lời giải bài tập Chuyên đề Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Bài tập cuối chuyên đề 2

Bài 1: Elip

Bài 3: Parabol

Bài 4: Tính chất chung của ba đường conic

Bài tập cuối chuyên đề 3

1 431 08/11/2022


Xem thêm các chương trình khác: