Câu hỏi:
21/07/2024 490Xác định parabol (P): y = ax2 + bx + c, a ≠ 0 biết c = 2 và (P) đi qua B (3; −4) và có trục đối xứng là x=−32
A. y=−13x2−x+2
B. y=−x2−x+1
C. y=−13x2+x+2
D. y=−16x2−32x+2
Trả lời:

Đáp án A
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Xác định parabol (P): y = ax2 + bx + c, a ≠ 0 đỉnh I biết (P) đi qua M (4; 3) cắt Ox tại N (3; 0) và P sao cho △INP có diện tích bằng 1, biết hoành độ điểm P nhỏ hơn 3.
Câu 2:
Tịnh tiến đồ thị hàm số y = x2 +1 liên tiếp sang phải 2 đơn vị và lên trên 1 đơn vị ta được đồ thị của hàm số nào?
Câu 3:
Tìm Parabol y = ax2 + 3x – 2, biết rằng parabol đó cắt trục Ox tại điểm có hoành độ bằng 2
Câu 4:
Xác định parabol (P): y = ax2 + bx + c, a ≠ 0 biết (P) đi qua A (2; 3) có đỉnh I (1; 2)
Câu 5:
Xác định parabol (P): y = ax2 + bx + c, a ≠ 0 biết hàm số có giá trị nhỏ nhất bằng 34 khi x=12 và nhận giá trị bằng 1 khi x = 1.
Câu 6:
Tìm m để đồ thị hàm số sau nhận gốc tọa độ O làm tâm đối xứng y = x3 − (m2 − 9)x2 + (m + 3)x + m − 3.
Câu 7:
Cho hàm số y = mx3 . Tìm các điểm cố định mà đồ thị hàm số đã cho luôn đi qua với mọi m.
Câu 8:
Cho hàm số y = . Tìm m để điểm M (−1; 2) thuộc đồ thị hàm số đã cho
Câu 9:
Cho hàm số: với m là tham số. Tìm m để hàm số xác định trên (0; 1)
Câu 10:
Nêu cách tịnh tiến đồ thị hàm số y = −2 để được đồ thị hàm số y = −2 − 6x + 3.
Câu 13:
Cho hàm số bậc nhất có đồ thị là đường thẳng d. Tìm hàm số đó biết dd đi qua A (1; 3),B (2; −1)