Câu hỏi:
19/07/2024 476Với mọi số nguyên dương n≥2, ta có: (1-14)(1-19)...(1-1n2)=an+2bn, trong đó a, b là các số nguyên. Tính các giá trị của biểu thức T=a2+b2
A. P = 5
B. P = 9
C. P = 20
D. P = 36
Trả lời:

Bằng cách phân tích số hạng đại diện, ta có:
1−1k2=k−1k.k+1k
Suy ra
(1−14)(1−19)...(1−1n2)=12.32.23.43...n−1n.n+1n
=n+12n=2n+24n
Đối chiếu với đẳng thức đã cho ta có: a=2,b=4
Suy ra P=a2+b2=20
Đáp án cần chọn là: C
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 4:
Đặt Sn=11.2+12.3+13.4+...+1n(n+1) với n∈ℕ*. Mệnh đề nào dưới đây đúng
Câu 7:
Đặt Sn=11.3+13.5+...+1(2n-1)(2n+1) với n∈ℕ*. Mệnh đề nào dưới đây đúng
Câu 8:
Dùng quy nạp chứng minh mệnh đề chứa biến P(n) đúng với mọi số tự nhiên n≥p (p là một số tự nhiên). Ở bước 2 ta giả thiết mệnh đề P(n) đúng với n=k. Khẳng định nào sau đây là đúng?
Câu 10:
Khi sử dụng phương pháp quy nạp để chứng minh mệnh đề chứa biến đúng với mọi số tự nhiên n≥p ( p là một số tự nhiên), ta tiến hành hai bước:
- Bước 1, kiểm tra mệnh đề P(n) đúng với n=p
- Bước 2, giả thiết mệnh đề P(n) đúng với số tự nhiên bất kỳ n=k≥p và phải chứng minh rằng nó cũng đúng với n=k+1
Trong hai bước trên:
Câu 11:
Với n∈N* , ta xét các mệnh đề: P :“ 7n + 5 chia hết cho 2”;
Q: “7n+ 5 chia hết cho 3” và R: “7n+ 5 chia hết cho 6”.
Số mệnh đề đúng trong các mệnh đề trên là:
Câu 12:
Một học sinh chứng minh mệnh đề "8n+1 chia hết cho 7, ∀n∈ℕ*" (*) như sau:
Giả sử (*) đúng với n=k tức là 8k+ 1 chia hết cho 7
Ta có: , kết hợp với giả thiết
chia hết cho 7 nên suy ra được
chia hết cho 7.
Vậy đẳng thức (*) đúng với mọi n∈ℕ*
Khẳng định nào sau đây là đúng?
Câu 15:
Đối với bài toán chứng minh P(n) đúng với mọi n≥p với p là số tự nhiên cho trước thì ở bước 1 ta cần chứng minh mệnh đề đúng với: