Câu hỏi:

23/07/2024 938

Tính tổng:

1.4 + 2.7 + … +n.(3n +1)

A. 

Đáp án chính xác

B. 

C. 

D. Đáp án  khác

Trả lời:

verified Giải bởi Vietjack

Ta dùng phương pháp quy nạp để chứng minh với mọi số nguyên dương n thì:

 1.4+2.7++n3n+1

=nn+12 (1)

Với n = 1: Vế trái của (1)  = 1. 4 = 4.

 Vế phải của (1) =1(1+1)2=4.

 Suy ra Vế trái của (1) = Vế phải của (1).  Vậy (1) đúng với n = 1.

Giả sử (1) đúng với n = k . Có nghĩa là ta có:

1.4+2.7++k3k+1

=kk+12 2

Ta phải chứng minh (1) đúng với n = k + 1  . Có nghĩa ta phải chứng minh:

1.4+2.7++k3k+1

+k+13k+4

=k+1k+22

Thật vậy

 1.4+2.7++k3k+1=kk+12

+k+13k+4

=kk+12+k+13k+4

=(k+1).[ k.(k+1)+3k+4] 

  =(k+1).(k2+4k+4)                                                                  

=k+1k+22 (đpcm).

Vậy (1) đúng khi n =  k + 1 . Do đó theo nguyên lí quy nạp, (1) đúng với mọi số nguyên dương n.

Chọn  A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Với mọi số nguyên dương n , tổng Sn=1.2+2.3+3.4+...+nn+1 là: 

Xem đáp án » 23/07/2024 3,089

Câu 2:

Chọn mệnh đề đúng: Với mọi n* thì:

Xem đáp án » 23/07/2024 877

Câu 3:

Với mọi số nguyên dương n2, ta có: 1-141-19...1-1n2=an+2bn, trong đó a, b là các số nguyên. Tính các giá trị của biểu thức T=a2+b2

Xem đáp án » 19/07/2024 403

Câu 4:

Đặt Sn=11.2+12.3+13.4+...+1nn+1 với n*. Mệnh đề nào dưới đây đúng

Xem đáp án » 18/07/2024 343

Câu 5:

Đặt Sn=11.3+13.5+...+12n-12n+1 với n*. Mệnh đề nào dưới đây đúng

Xem đáp án » 21/07/2024 308

Câu 6:

Tìm tất cả các số nguyên dương n sao cho 2n+1>n2+3n

Xem đáp án » 19/07/2024 298

Câu 7:

Dùng quy nạp chứng minh mệnh đề chứa biến Pn đúng với mọi số tự nhiên np (p là một số tự nhiên). Ở bước 2 ta giả thiết mệnh đề Pn đúng với n=k. Khẳng định nào sau đây là đúng?

Xem đáp án » 22/07/2024 297

Câu 8:

Với mọi số nguyên dương n, tổng 2 + 5 + 8 + … + (3n – 1) là:

Xem đáp án » 18/07/2024 295

Câu 9:

Khi sử dụng phương pháp quy nạp để chứng minh mệnh đề chứa biến  đúng với mọi số tự nhiên np ( p là một số tự nhiên), ta tiến hành hai bước:

- Bước 1, kiểm tra mệnh đề P(n) đúng với n=p

- Bước 2, giả thiết mệnh đề P(n) đúng với số tự nhiên bất kỳ n=kp và phải chứng minh rằng nó cũng đúng với  n=k+1

Trong hai bước trên:

Xem đáp án » 22/07/2024 282

Câu 10:

Với mọi số tự nhiên n , tổng Sn=n3+3n2+5n+3 chia hết cho:

Xem đáp án » 23/07/2024 276

Câu 11:

Với nN* , ta xét các mệnh đề: P :“ 7n + 5  chia hết cho 2”;

Q: “7n+ 5 chia hết cho 3” và R: “7n+ 5  chia hết cho 6”.

Số mệnh đề đúng trong các mệnh đề trên là:

Xem đáp án » 22/07/2024 270

Câu 12:

Đối với bài toán chứng minh Pn đúng với mọi np với p là số tự nhiên cho trước thì ở bước 1 ta cần chứng minh mệnh đề đúng với:

Xem đáp án » 18/07/2024 247

Câu 13:

Trong phương pháp quy nạp toán học, ở bước 2, nếu ta giả sử mệnh đề đúng với n=k+1 thì ta cần chứng minh mệnh đề đúng với:

Xem đáp án » 21/07/2024 245

Câu 14:

Bất đẳng thức nào sau đây đúng? Với mọi số nguyên dương n thì:

Xem đáp án » 22/07/2024 243

Câu 15:

Một học sinh chứng minh mệnh đề "8n+1 chia hết cho 7, n*" (*)  như sau:

Giả sử (*) đúng với n=k tức là 8k+ 1 chia hết cho 7

Ta có:  Một học sinh chứng minh mệnh đề 8^n+1 chia hết cho 7 (ảnh 1) ,  kết hợp với giả thiết Một học sinh chứng minh mệnh đề 8^n+1 chia hết cho 7 (ảnh 2) chia hết cho 7  nên suy ra được  Một học sinh chứng minh mệnh đề 8^n+1 chia hết cho 7 (ảnh 3) chia hết cho 7.

Vậy đẳng thức (*) đúng với mọi n*

 Khẳng định nào sau đây là đúng?

Xem đáp án » 18/07/2024 242

Câu hỏi mới nhất

Xem thêm »
Xem thêm »