Câu hỏi:

22/07/2024 250

Bất đẳng thức nào sau đây đúng? Với mọi số nguyên dương n thì:

A. 

B. 

C. 

Đáp án chính xác

D. 

Trả lời:

verified Giải bởi Vietjack

Khi n=1 ta có 11=1<2⇒ Loại đáp án A, B, D.

Ta chứng minh đáp án C đúng bằng phương pháp quy nạp toán học.

Bất đẳng thức đúng với n=1.

Giả sử bất đẳng thức đúng đến n=k(k1) tức là

1+12+...+1k<2k, ta chứng minh bất đẳng thức đúng đến n=k+1, tức là cần chứng minh 1+12+...+1k+1<2k+1

Ta có: 

VT= 1+12+...+1k+1k+1

<2k+1k+1

Giả sử:

2k+1k+1<2k+11k+1<2k+12k=2k+1+kk+1>k+12+k2k+12>k2  k+1  ​>​  k

(luôn đúng)

Do đó: 2k+1k+1<2k+1

1+12+...+1k+1<  2k+​  1

Do đó bất đẳng thức đúng đến n=k+1

Vậy 1+12+...+1n<2n  đúng với mọi số nguyên dương .

Đáp án cần chọn là: C 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Với mọi số nguyên dương n , tổng Sn=1.2+2.3+3.4+...+nn+1 là: 

Xem đáp án » 23/07/2024 3,137

Câu 2:

Tính tổng:

1.4 + 2.7 + … +n.(3n +1)

Xem đáp án » 23/07/2024 959

Câu 3:

Chọn mệnh đề đúng: Với mọi n* thì:

Xem đáp án » 23/07/2024 894

Câu 4:

Với mọi số nguyên dương n2, ta có: 1-141-19...1-1n2=an+2bn, trong đó a, b là các số nguyên. Tính các giá trị của biểu thức T=a2+b2

Xem đáp án » 19/07/2024 415

Câu 5:

Đặt Sn=11.2+12.3+13.4+...+1nn+1 với n*. Mệnh đề nào dưới đây đúng

Xem đáp án » 18/07/2024 384

Câu 6:

Đặt Sn=11.3+13.5+...+12n-12n+1 với n*. Mệnh đề nào dưới đây đúng

Xem đáp án » 21/07/2024 314

Câu 7:

Tìm tất cả các số nguyên dương n sao cho 2n+1>n2+3n

Xem đáp án » 19/07/2024 307

Câu 8:

Dùng quy nạp chứng minh mệnh đề chứa biến Pn đúng với mọi số tự nhiên np (p là một số tự nhiên). Ở bước 2 ta giả thiết mệnh đề Pn đúng với n=k. Khẳng định nào sau đây là đúng?

Xem đáp án » 22/07/2024 304

Câu 9:

Với mọi số nguyên dương n, tổng 2 + 5 + 8 + … + (3n – 1) là:

Xem đáp án » 18/07/2024 303

Câu 10:

Khi sử dụng phương pháp quy nạp để chứng minh mệnh đề chứa biến  đúng với mọi số tự nhiên np ( p là một số tự nhiên), ta tiến hành hai bước:

- Bước 1, kiểm tra mệnh đề P(n) đúng với n=p

- Bước 2, giả thiết mệnh đề P(n) đúng với số tự nhiên bất kỳ n=kp và phải chứng minh rằng nó cũng đúng với  n=k+1

Trong hai bước trên:

Xem đáp án » 22/07/2024 291

Câu 11:

Với mọi số tự nhiên n , tổng Sn=n3+3n2+5n+3 chia hết cho:

Xem đáp án » 23/07/2024 285

Câu 12:

Với nN* , ta xét các mệnh đề: P :“ 7n + 5  chia hết cho 2”;

Q: “7n+ 5 chia hết cho 3” và R: “7n+ 5  chia hết cho 6”.

Số mệnh đề đúng trong các mệnh đề trên là:

Xem đáp án » 22/07/2024 276

Câu 13:

Đối với bài toán chứng minh Pn đúng với mọi np với p là số tự nhiên cho trước thì ở bước 1 ta cần chứng minh mệnh đề đúng với:

Xem đáp án » 18/07/2024 253

Câu 14:

Trong phương pháp quy nạp toán học, ở bước 2, nếu ta giả sử mệnh đề đúng với n=k+1 thì ta cần chứng minh mệnh đề đúng với:

Xem đáp án » 21/07/2024 249

Câu 15:

Một học sinh chứng minh mệnh đề "8n+1 chia hết cho 7, n*" (*)  như sau:

Giả sử (*) đúng với n=k tức là 8k+ 1 chia hết cho 7

Ta có:  Một học sinh chứng minh mệnh đề 8^n+1 chia hết cho 7 (ảnh 1) ,  kết hợp với giả thiết Một học sinh chứng minh mệnh đề 8^n+1 chia hết cho 7 (ảnh 2) chia hết cho 7  nên suy ra được  Một học sinh chứng minh mệnh đề 8^n+1 chia hết cho 7 (ảnh 3) chia hết cho 7.

Vậy đẳng thức (*) đúng với mọi n*

 Khẳng định nào sau đây là đúng?

Xem đáp án » 18/07/2024 248

Câu hỏi mới nhất

Xem thêm »
Xem thêm »