Câu hỏi:

18/07/2024 248

Một học sinh chứng minh mệnh đề "8n+1 chia hết cho 7, n*" (*)  như sau:

Giả sử (*) đúng với n=k tức là 8k+ 1 chia hết cho 7

Ta có:  Một học sinh chứng minh mệnh đề 8^n+1 chia hết cho 7 (ảnh 1) ,  kết hợp với giả thiết Một học sinh chứng minh mệnh đề 8^n+1 chia hết cho 7 (ảnh 2) chia hết cho 7  nên suy ra được  Một học sinh chứng minh mệnh đề 8^n+1 chia hết cho 7 (ảnh 3) chia hết cho 7.

Vậy đẳng thức (*) đúng với mọi n*

 Khẳng định nào sau đây là đúng?

A. Học sinh trên chứng minh đúng.

B. Học sinh chứng minh sai vì không có giả thiết qui nạp.

C. Học sinh chứng minh sai vì không dùng giả thiết qui nạp.

D. Học sinh không kiểm tra bước 1 (bước cơ sở) của phương pháp qui nạp

Đáp án chính xác

Trả lời:

verified Giải bởi Vietjack

Quan sát lời giải trên ta thấy:

Học sinh thực hiện thiếu bước 1: Kiểm tra n=1 thì 81+1=9 không chia hết cho 7 nên mệnh đề đó sai.

Đáp án cần chọn là: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Với mọi số nguyên dương n , tổng Sn=1.2+2.3+3.4+...+nn+1 là: 

Xem đáp án » 23/07/2024 3,137

Câu 2:

Tính tổng:

1.4 + 2.7 + … +n.(3n +1)

Xem đáp án » 23/07/2024 959

Câu 3:

Chọn mệnh đề đúng: Với mọi n* thì:

Xem đáp án » 23/07/2024 893

Câu 4:

Với mọi số nguyên dương n2, ta có: 1-141-19...1-1n2=an+2bn, trong đó a, b là các số nguyên. Tính các giá trị của biểu thức T=a2+b2

Xem đáp án » 19/07/2024 415

Câu 5:

Đặt Sn=11.2+12.3+13.4+...+1nn+1 với n*. Mệnh đề nào dưới đây đúng

Xem đáp án » 18/07/2024 384

Câu 6:

Đặt Sn=11.3+13.5+...+12n-12n+1 với n*. Mệnh đề nào dưới đây đúng

Xem đáp án » 21/07/2024 313

Câu 7:

Tìm tất cả các số nguyên dương n sao cho 2n+1>n2+3n

Xem đáp án » 19/07/2024 306

Câu 8:

Dùng quy nạp chứng minh mệnh đề chứa biến Pn đúng với mọi số tự nhiên np (p là một số tự nhiên). Ở bước 2 ta giả thiết mệnh đề Pn đúng với n=k. Khẳng định nào sau đây là đúng?

Xem đáp án » 22/07/2024 303

Câu 9:

Với mọi số nguyên dương n, tổng 2 + 5 + 8 + … + (3n – 1) là:

Xem đáp án » 18/07/2024 303

Câu 10:

Khi sử dụng phương pháp quy nạp để chứng minh mệnh đề chứa biến  đúng với mọi số tự nhiên np ( p là một số tự nhiên), ta tiến hành hai bước:

- Bước 1, kiểm tra mệnh đề P(n) đúng với n=p

- Bước 2, giả thiết mệnh đề P(n) đúng với số tự nhiên bất kỳ n=kp và phải chứng minh rằng nó cũng đúng với  n=k+1

Trong hai bước trên:

Xem đáp án » 22/07/2024 290

Câu 11:

Với mọi số tự nhiên n , tổng Sn=n3+3n2+5n+3 chia hết cho:

Xem đáp án » 23/07/2024 285

Câu 12:

Với nN* , ta xét các mệnh đề: P :“ 7n + 5  chia hết cho 2”;

Q: “7n+ 5 chia hết cho 3” và R: “7n+ 5  chia hết cho 6”.

Số mệnh đề đúng trong các mệnh đề trên là:

Xem đáp án » 22/07/2024 276

Câu 13:

Đối với bài toán chứng minh Pn đúng với mọi np với p là số tự nhiên cho trước thì ở bước 1 ta cần chứng minh mệnh đề đúng với:

Xem đáp án » 18/07/2024 252

Câu 14:

Bất đẳng thức nào sau đây đúng? Với mọi số nguyên dương n thì:

Xem đáp án » 22/07/2024 249

Câu 15:

Trong phương pháp quy nạp toán học, ở bước 2, nếu ta giả sử mệnh đề đúng với n=k+1 thì ta cần chứng minh mệnh đề đúng với:

Xem đáp án » 21/07/2024 248

Câu hỏi mới nhất

Xem thêm »
Xem thêm »