Câu hỏi:
21/07/2024 314Đặt với . Mệnh đề nào dưới đây đúng
A.
B.
C.
D.
Trả lời:
Cách 1: Rút gọn biểu thức dựa vào việc phân tích phần tử đại diện.
Với mọi số nguyên dương , ta có
Do đó:
Vậy phương án đúng là phương án C.
Cách 2. Dùng phương pháp quy nạp chứng minh C đúng.
Đáp án cần chọn là: C
Cách 1: Rút gọn biểu thức dựa vào việc phân tích phần tử đại diện.
Với mọi số nguyên dương , ta có
Do đó:
Vậy phương án đúng là phương án C.
Cách 2. Dùng phương pháp quy nạp chứng minh C đúng.
Đáp án cần chọn là: C
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 4:
Với mọi số nguyên dương , ta có: , trong đó a, b là các số nguyên. Tính các giá trị của biểu thức
Câu 7:
Dùng quy nạp chứng minh mệnh đề chứa biến đúng với mọi số tự nhiên (p là một số tự nhiên). Ở bước 2 ta giả thiết mệnh đề đúng với . Khẳng định nào sau đây là đúng?
Câu 9:
Khi sử dụng phương pháp quy nạp để chứng minh mệnh đề chứa biến đúng với mọi số tự nhiên ( p là một số tự nhiên), ta tiến hành hai bước:
- Bước 1, kiểm tra mệnh đề đúng với
- Bước 2, giả thiết mệnh đề đúng với số tự nhiên bất kỳ và phải chứng minh rằng nó cũng đúng với
Trong hai bước trên:
Câu 11:
Với , ta xét các mệnh đề: :“ + 5 chia hết cho 2”;
Q: “+ 5 chia hết cho 3” và R: “+ 5 chia hết cho 6”.
Số mệnh đề đúng trong các mệnh đề trên là:
Câu 12:
Đối với bài toán chứng minh đúng với mọi với p là số tự nhiên cho trước thì ở bước 1 ta cần chứng minh mệnh đề đúng với:
Câu 14:
Một học sinh chứng minh mệnh đề " chia hết cho 7, " (*) như sau:
Giả sử (*) đúng với tức là + 1 chia hết cho 7
Ta có: , kết hợp với giả thiết chia hết cho 7 nên suy ra được chia hết cho 7.
Vậy đẳng thức (*) đúng với mọi
Khẳng định nào sau đây là đúng?
Câu 15:
Trong phương pháp quy nạp toán học, ở bước 2, nếu ta giả sử mệnh đề đúng với thì ta cần chứng minh mệnh đề đúng với: