Câu hỏi:
19/07/2024 307Tìm tất cả các số nguyên dương n sao cho
A.
B.
C.
D.
Trả lời:
Kiểm tra tính đúng – sai của bất đẳng thức với các trường hợp = 1,2,3,4, ta dự đoán được , với 4. Ta chứng minh bất đẳng thức này bằng phương pháp quy nạp toán học. Thật vây:
- Bước 1: Với thì vế trái bằng , còn vế phải bằng
Do 32>28 nên bất đẳng thức đúng với
- Bước 2: Giả sử đẳng thức đúng với , nghĩa là
Ta phải chứng minh bất đẳng thức cũng đúng với , tức là phải chứng minh hay
Thật vậy, theo giả thiết quy nạp ta có
Suy ra hay
Mặt khác:
với mọi
Do đó hay bất đẳng thức đúng với .
Suy ra bất đẳng thức được chứng minh.
Vậy phương án đúng là D.
Đáp án cần chọn là: D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 4:
Với mọi số nguyên dương , ta có: , trong đó a, b là các số nguyên. Tính các giá trị của biểu thức
Câu 7:
Dùng quy nạp chứng minh mệnh đề chứa biến đúng với mọi số tự nhiên (p là một số tự nhiên). Ở bước 2 ta giả thiết mệnh đề đúng với . Khẳng định nào sau đây là đúng?
Câu 9:
Khi sử dụng phương pháp quy nạp để chứng minh mệnh đề chứa biến đúng với mọi số tự nhiên ( p là một số tự nhiên), ta tiến hành hai bước:
- Bước 1, kiểm tra mệnh đề đúng với
- Bước 2, giả thiết mệnh đề đúng với số tự nhiên bất kỳ và phải chứng minh rằng nó cũng đúng với
Trong hai bước trên:
Câu 11:
Với , ta xét các mệnh đề: :“ + 5 chia hết cho 2”;
Q: “+ 5 chia hết cho 3” và R: “+ 5 chia hết cho 6”.
Số mệnh đề đúng trong các mệnh đề trên là:
Câu 12:
Đối với bài toán chứng minh đúng với mọi với p là số tự nhiên cho trước thì ở bước 1 ta cần chứng minh mệnh đề đúng với:
Câu 14:
Một học sinh chứng minh mệnh đề " chia hết cho 7, " (*) như sau:
Giả sử (*) đúng với tức là + 1 chia hết cho 7
Ta có: , kết hợp với giả thiết chia hết cho 7 nên suy ra được chia hết cho 7.
Vậy đẳng thức (*) đúng với mọi
Khẳng định nào sau đây là đúng?
Câu 15:
Trong phương pháp quy nạp toán học, ở bước 2, nếu ta giả sử mệnh đề đúng với thì ta cần chứng minh mệnh đề đúng với: