Câu hỏi:
21/07/2024 3,028
Trong mặt phẳng tọa độ Oxy, cho điểm M(a; b) di động trên đường thẳng d: 2x + 5y – 10 = 0. Tìm a, b để khoảng cách ngắn nhất từ điểm A đến điểm M, biết điểm A(3; ‒1).
Trong mặt phẳng tọa độ Oxy, cho điểm M(a; b) di động trên đường thẳng d: 2x + 5y – 10 = 0. Tìm a, b để khoảng cách ngắn nhất từ điểm A đến điểm M, biết điểm A(3; ‒1).
A. a = và b = ;
A. a = và b = ;
B. a = và b = ;
B. a = và b = ;
C. a = và b = ;
D. a = và b = .
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Để khoảng cách AM là ngắn nhất thì M là hình chiếu của A lên đường thẳng d.
Khi đó AM vuông góc với d, do đó vectơ pháp tuyến của đường thẳng AM chính là vectơ chỉ phương của đường thẳng d.
Vectơ pháp tuyến của đường thẳng d là:
Vectơ chỉ phương của đường thẳng d là:
Khi đó là vectơ pháp tuyến của đường thẳng AM.
Phương trình đường thẳng AM là:
5.(x – 3) – 2.(y + 1) = 0 hay 5x – 2y – 17 = 0.
M là giao điểm của 2 đường thẳng AM và d nên tọa độ điểm M là nghiệm của hệ:
.
Vậy a = và b = .
Hướng dẫn giải
Đáp án đúng là: C
Để khoảng cách AM là ngắn nhất thì M là hình chiếu của A lên đường thẳng d.
Khi đó AM vuông góc với d, do đó vectơ pháp tuyến của đường thẳng AM chính là vectơ chỉ phương của đường thẳng d.
Vectơ pháp tuyến của đường thẳng d là:
Vectơ chỉ phương của đường thẳng d là:
Khi đó là vectơ pháp tuyến của đường thẳng AM.
Phương trình đường thẳng AM là:
5.(x – 3) – 2.(y + 1) = 0 hay 5x – 2y – 17 = 0.
M là giao điểm của 2 đường thẳng AM và d nên tọa độ điểm M là nghiệm của hệ:
.
Vậy a = và b = .
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Đường thẳng d đi qua 2 điểm A(1; 3) và B(2; 5). Viết phương trình đoạn chắn của đường thẳng d.
Đường thẳng d đi qua 2 điểm A(1; 3) và B(2; 5). Viết phương trình đoạn chắn của đường thẳng d.
Câu 2:
Đường thẳng d tạo với đường thẳng : x + 2y – 6 = 0 một góc 45°. Hệ số góc k của đường thẳng d là:
Đường thẳng d tạo với đường thẳng : x + 2y – 6 = 0 một góc 45°. Hệ số góc k của đường thẳng d là:
Câu 3:
Cho phương trình tham số của d: (t là tham số). Tính khoảng cách từ trung điểm M của AB đến d biết A(2; 4) và B(0; 6).
Cho phương trình tham số của d: (t là tham số). Tính khoảng cách từ trung điểm M của AB đến d biết A(2; 4) và B(0; 6).
Câu 4:
Viết phương trình tham số của đường thẳng d đi qua M(2; 6) và song song với đường thẳng x + 3y – 10 = 0.
Viết phương trình tham số của đường thẳng d đi qua M(2; 6) và song song với đường thẳng x + 3y – 10 = 0.