Câu hỏi:
23/07/2024 2,290Trong mặt phẳng tọa độ Oxy, cho điểm M (4; 1), đường thẳng d qua M, d cắt tia Ox, Oy lần lượt tại A (a; 0), B (0; b) sao cho tam giác ABO (O là gốc tọa độ) có diện tích nhỏ nhất. Giá trị a − 4b bằng
A. -14
B. 0
C. 8
D. -2
Trả lời:
Ta có phương trình đường thẳng dd có dạng: (theo giả thiết ta có a > 0,b > 0)
Do d đi qua M (4; 1) nên ta có
Mặt khác diện tích của tam giác vuông ABO là
Áp dụng BĐT Cô si ta có
Vậy diện tích của tam giác vuông ABO nhỏ nhất bằng 8 khi a, b thỏa mãn hệ phương trình
Đáp án cần chọn là: B
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong mặt phẳng Oxy, cho tam giác ABC có A (−4; −1), hai đường cao BH và CK có phương trình lần lượt là 2x – y + 3 = 0 và 3x + 2y – 6 = 0. Viết phương trình đường thẳng BC và tính diện tích tam giác ABC
Câu 2:
Trong mặt phẳng với hệ tọa độ Oxy cho đường thẳng Δ: x − 2y – 5 = 0 và các điểm A (1; 2), B (−2; 3), C (−2; 1). Viết phương trình đường thẳng d, biết đường thẳng d đi qua gốc tọa độ và cắt đường thẳng Δ tại điểm M sao cho: nhỏ nhất
Câu 3:
Cho tam giác ABC nội tiếp đường tròn tâm I (2; 1), trọng tâm , phương trình đường thẳng AB: x – y + 1 = 0. Giả sử điểm C (x0; y0), tính 2x0 + y0
Câu 4:
Trong mặt phẳng với hệ trục Oxy, cho hình vuông ABCD có tâm là điểm I. Gọi G (1; −2) và K (3; 1) lần lượt là trọng tâm các tam giác ACD và ABI. Biết A (a; b) với b > 0. Khi đó a2 + b2 bằng
Câu 5:
Trong mặt phẳng tọa độ Oxy, cho ba điểm A (1; 0), B (0; 5) và C (−3; −5). Tìm tọa độ điểm M thuộc trục Oy sao cho đạt giá trị nhỏ nhất?
Câu 6:
Cho A (1; −1), B (3; 2). Tìm M trên trục Oy sao cho MA2 + MB2 nhỏ nhất.
Câu 7:
Cho hai điểm P (1; 6) và Q (−3; −4) và đường thẳng Δ: 2x – y – 1 = 0. Tọa độ điểm N thuộc Δ sao cho |NP − NQ| lớn nhất
Câu 8:
Cho đường tròn (C): x2 + y2 − 2x + 2y – 7 = 0 và đường thẳng d: x + y + 1 = 0. Tìm tất cả các đường thẳng song song với đường thẳng d và cắt đường tròn (C) theo dây cung có độ dài bằng 2
Câu 9:
Cho tam giác ABC có và hai trong ba đường phân giác trong có phương trình lần lượt là x − 2y – 1 = 0, x + 3y – 1 = 0. Viết phương trình đường thẳng chứa cạnh BC.
Câu 10:
Cho tam giác ABC có diện tích bằng , hai đỉnh A (2; −3) và B (3; −2). Trọng tâm G nằm trên đường thẳng 3x – y – 8 = 0. Tìm tọa độ đỉnh C?
Câu 11:
Trong mặt phẳng tọa độ Oxy, tam giác ABC có đỉnh A (−1; 2), trực tâm H (−3; −12), trung điểm của cạnh BC là M (4; 3). Gọi I, R lần lượt là tâm, bán kính đường tròn ngoại tiếp tam giác ABC. Chọn khẳng định đúng trong các khẳng định sau
Câu 12:
Trong mặt phẳng với hệ tọa độ Oxy cho hình chữ nhật ABCD biết AD = 2AB, đường thẳng AC có phương trình x + 2y + 2 = 0, D (1; 1) và A (a; b) (a, b ∈ R, a > 0). Tính a + b
Câu 13:
Đường tròn đi qua A (2; 4), tiếp xúc với các trục tọa độ có phương trình là
Câu 14:
Đường thẳng nào dưới đây tiếp xúc với đường tròn (x − 2)2 + y2 = 4, tại M có hoành độ xM = 3?