Câu hỏi:
16/07/2024 223Trong mặt phẳng Oxy cho đường thẳng (d): 3x − 4y + 5 = 0 và đường tròn (C): . Tìm những điểm M thuộc (C) và N thuộc (d) sao cho MN có độ dài nhỏ nhất
A.
B.
C.
D.
Trả lời:
Đường tròn (C) có tâm I (−1; 3) và bán kính
MN min ⇔ IN đạt min ⇔ N là chân hình chiếu vuông góc của I xuống đường thẳng d.
Giả sử N (a; b). Vì N ∈ d nên ta có 3a − 4b + 5 = 0 (1)
Mặt khác, ta có: IN vuông góc với d nên
Mà = (a + 1; b − 3), = (4; 3). Suy ra ta có:
4 (a + 1) + 3(b − 3) = 0 ⇔ 4a + 3b – 5 = 0 (2)
Từ (1) và (2) ta có hệ phương trình
Vì d (I; d) = 2R nên M là trung điểm của IN. Do đó, tọa độ của M là:
Đáp án cần chọn là: B
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong mặt phẳng với hệ trục tọa độ Oxy, cho hai đường thẳng d1: x + y + 5 = 0, d2: x + 2y – 7 = 0 và tam giác ABC có A (2; 3), trọng tâm là G (2; 0), điểm B thuộc d1 và điểm C thuộc d2. Viết phương trình đường tròn ngoại tiếp tam giác ABC
Câu 2:
Cho (C): , một phương trình tiếp tuyến của (C) vuông góc với đường thẳng (d): 3x + 4y – 37 = 0 là:
Câu 3:
Tìm tọa độ tâm I của đường tròn đi qua ba điểm A (0; 4), B (2; 4), C (4; 0)
Câu 4:
Cho phương trình x2 + y2 − 8x + 10y + m = 0 (1). Tìm điều kiện của m để (1) là phương trình đường tròn có bán kính bằng 7
Câu 5:
Đường tròn (x − a)2 + (y − b)2 = R2 cắt đường thẳng x + y – a – b = 0 theo một dây cung có độ dài bằng bao nhiêu ?
Câu 6:
Cho phương trình (1). Tìm điều kiện của m để (1) là phương trình đường tròn?
Câu 7:
Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): . Số phương trình tiếp tuyến của (C), biết góc giữa tiếp tuyến này và trục hoành bằng 600
Câu 8:
Trong mặt phẳng với hệ tọa độ Oxy. Cho đường tròn (C): và đường thẳng d: x + y + 1 = 0. Tìm những điểm M thuộc đường thẳng d sao cho từ điểm M kẻ được đến (C) hai tiếp tuyến hợp với nhau góc 900
Câu 9:
Cho đường tròn (C): và đường thẳng (d): x – y – 1 = 0. Một tiếp tuyến của (C) song song với d có phương trình là:
Câu 10:
Cho phương trình (1). Có bao nhiêu giá trị m nguyên dương không vượt quá 10 để (1) là phương trình của đường tròn?
Câu 11:
Cho tam giác ABC có A (−2; 4), B (5; 5), C (6; −2). Đường tròn ngoại tiếp tam giác ABC có phương trình là
Câu 12:
Đường thẳng d: 4x + 3y + m = 0 tiếp xúc với đường tròn (C): x2 + y2 = 1 khi
Câu 13:
Cho phương trình . Với giá trị nào của m để (1) là phương trình đường tròn có bán kính nhỏ nhất?
Câu 14:
Phương trình đường tròn (C) đi qua hai điểm A (0; 1), B (1; 0) và có tâm nằm trên đường thẳng: x + y + 2 = 0 là