Câu hỏi:

19/07/2024 169

Trên nóc tòa nhà có một cột ăng – ten cao 5m. Từ vị trí quan sát A cao 7m so với mặt đất có thể quan sát được đỉnh B và chân C của cột ăng – ten dưới góc 50° và 40° so với phường nằm ngang. Chiều cao của tòa nhà gần nhất với giá trị nào sau đây?

Trên nóc tòa nhà có một cột ăng – ten cao 5m. Từ vị trí quan sát A cao 7m so với mặt đất có thể (ảnh 1)


A. 12m;


B. 19m;

Đáp án chính xác

C. 29m;

D. 24m.

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Gọi điểm H là chân tòa nhà. Điểm D là điểm tương ứng trên tòa nhà ngang bằng với vị trí quan sát A. Như vậy ADC^  = 90°.

Từ vị trí quan sát A cao 7m so với mặt đất có thể quan sát được đỉnh B và chân C của cột ăng – ten dưới góc 50° và 40° so với phường nằm ngang. Như vậy DAC^ = 40° và DAB^ = 50°.

Xét tam giác ABD có: ABD^  = 180 – ADB^  DAB^  = 180° – 90° – 50° = 40° = ABC^

Xét tam giác ABC có:

 BAC^= 50° – 40° = 10°.

Áp dụng định lí sin cho tam giác ABC:

 BCsinA=ACsinB5sin10°=ACsin40°  AC ≈ 18,5m

Áp dụng định lí sin cho tam giác ADC:

 CDsinA=ACsinDCDsin40°=18,5sin90°  CD ≈ 11,9m

Chiều cao tòa nhà tương ứng với đoạn CH.

CH = CD + DH = 11,9 + 7 = 18,9 ≈ 19m.

Vậy đáp án đúng là B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hai chiếc tàu thủy cùng xuất phát từ vị trí A, đi thẳng theo hai hướng tạo với nhau một góc 60°. Tàu tới B chạy với tốc độ 20 hải lí một giờ. Tàu tới C chạy với tốc độ 15 hải lí một giờ. Hỏi sau hai giờ hai tàu cách nhau bao nhiêu hải lí? ( Chọn kết quả gần nhất ).

Hai chiếc tàu thủy cùng xuất phát từ vị trí A, đi thẳng theo hai hướng tạo với nhau một góc 60 độ (ảnh 1)

Xem đáp án » 21/07/2024 167

Câu 2:

Tam giác ABC có BC = a, AC = b, AB = c. Các cạnh a, b, c liên hệ với nhau bằng đẳng thức b.( b2 – a2 ) = c.( a2 – c2 ). Tính BAC^ .

Xem đáp án » 14/07/2024 135

Câu 3:

Cho 3cosα – sinα = 1; 0° < α < 90°. Tính tanα.

Xem đáp án » 14/07/2024 123

Câu 4:

Cho biết 2cosα+2sinα=2 . Tính cotα biết 0° < α < 90°.

Xem đáp án » 14/07/2024 122

Câu hỏi mới nhất

Xem thêm »
Xem thêm »