Câu hỏi:
23/07/2024 1,826
Tập xác định của hàm số f(x) = x – 2 là:
A. [2; +∞);
B. ℝ \ {2};
C. ℝ;
Đáp án chính xác
D. (–∞; 2].
Trả lời:
Giải bởi Vietjack
Hướng dẫn giải:
Đáp án đúng là: C.
Xét hàm số f(x) = x – 2 ta thấy f(x) = x – 2 luôn có nghĩa với mọi giá trị thực của x. Do đó, tập xác định của hàm số là D = ℝ.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Tập giá trị của hàm số: \(f(x) = \frac{{2022}}{{\sqrt {2x - 2} }}\) là:
Tập giá trị của hàm số: \(f(x) = \frac{{2022}}{{\sqrt {2x - 2} }}\) là:
Xem đáp án »
13/07/2024
261
Câu 4:
Tập xác định của hàm số \(f(x) = \frac{{x + 3}}{{{x^2} + 1}}\) là:
Tập xác định của hàm số \(f(x) = \frac{{x + 3}}{{{x^2} + 1}}\) là:
Xem đáp án »
13/07/2024
211
Câu 7:
Hàm số v = f(t) được cho bởi bảng như sau:
Tìm tập xác định của hàm số này.
Hàm số v = f(t) được cho bởi bảng như sau:
Tìm tập xác định của hàm số này.
Xem đáp án »
16/07/2024
149
Câu 9:
Cho hàm số \(f(x) = \sqrt {2x + 7} \).
Tìm tập giá trị của hàm số.
Cho hàm số \(f(x) = \sqrt {2x + 7} \).
Xem đáp án »
13/07/2024
146
Câu 10:
Cho hàm số \(f(x) = \sqrt {2x + 7} \).
Tìm tập xác định của hàm số.
Cho hàm số \(f(x) = \sqrt {2x + 7} \).
Tìm tập xác định của hàm số.
Xem đáp án »
17/07/2024
140
Câu 13:
Hàm số \(f(x) = \frac{3}{{\sqrt {x - 4} }}\) có tập xác định là:
Hàm số \(f(x) = \frac{3}{{\sqrt {x - 4} }}\) có tập xác định là:
Xem đáp án »
13/07/2024
132