Câu hỏi:
14/07/2024 227Một công ty kinh doanh chuẩn bị cho một đợt khuyến mại nhằm thu hút khách hàng bằng cách tiến hành quảng cáo sản phẩm của công ty trên hệ thống phát thanh và truyền hình. Chi phí cho 1 phút quảng cáo trên sóng phát thanh là 800.000 đồng, trên sóng truyền hình là 4.000.000 đồng. Đài phát thanh chỉ nhận phát các chương trình quảng cáo dài ít nhất là 5 phút. Do nhu cầu quảng cáo trên truyền hình lớn nên đài truyền hình chỉ nhận phát các chương trình dài tối đa là 4 phút. Theo các phân tích, cùng thời lượng một phút quảng cáo, trên truyền hình sẽ có hiệu quả gấp 6 lần trên sóng phát thanh. Công ty dự định chi tối đa 16.000.000 đồng cho quảng cáo. Hỏi công ty cần đặt thời lượng quảng cáo trên sóng phát thanh và truyền hình lần lượt là bao nhiêu để hiệu quả nhất?
A. (20 ; 0)
B. (5 ; 0)
C. (5 ; 3)
D. Đáp án khác
Trả lời:
Chọn C
+ Gọi thời lượng công ty đặt quảng cáo trên sóng phát thanh là x (phút), trên truyền hình là y (phút). Chi phí cho việc này là:800.000x + 4.000.000y (đồng)
Mức chi này không được phép vượt qúa mức chi tối đa, tức:
800.000x+ 4.000.000y ≤ 16.000.000 hay x+ 5y-20 ≤ 0
Do các điều kiện đài phát thanh, truyền hình đưa ra, ta có:x ≥ 5 và y ≤ 4
Đồng thời do x; y là thời lượng nên x; y ≥ 0
Hiệu quả chung của quảng cáo là x+ 6y.
Bài toán trở thành: Xác định x; y sao cho:
M( x; y) = x + 6y đạt giá trị lớn nhất.
Với các điều kiện :
Trước tiên ta xác định miền nghiệm của hệ bất phương trình (*)
+Trong mặt phẳng tọa độ vẽ các đường thẳng
(d) : x + 5y - 20= 0 và (d’) ; x = 5; ( d’’) y = 4.
Khi đó miền nghiệm của hệ bất phương trình (*) là phần mặt phẳng(tam giác) không tô màu trên hình vẽ
Giá trị lớn nhất của M( x; y) =x+ 6y đạt tại một trong các điểm (5;3) ; ( 5;0) và ( 20; 0).
Ta có M (5; 3) = 23; M( 5; 0) = 5 và M( 20; 0) = 20.
+ Suy ra giá trị lớn nhất của M( x; y) bằng 23 tại ( 5; 3) tức là nếu đặt thời lượng quảng cáo trên sóng phát thanh là 5 phút và trên truyền hình là 3 phút thì sẽ đạt hiệu quả nhất.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Nhân dịp tết Trung Thu, Xí nghiệp sản xuất bánh muốn sản xuất hai loại bánh: Đậu xanh, Bánh dẻo nhân đậu xanh. Để sản xuất hai loại bánh này, Xí nghiệp cần: Đường, Đậu, Bột, Trứng, Mứt, ... Giả sử số đường có thể chuẩn bị được là 300kg, đậu là 200kg, các nguyên liệu khác bao nhiêu cũng có. Sản xuất một cái bánh đậu xanh cần 0,06kg đường, 0,08kg đậu và cho lãi 2 ngàn đồng. Sản xuất một cái bánh dẻo cần 0,07kg đường, 0,04kg đậu và cho lãi 1,8 ngàn đồng.. Nên làm bao nhiêu chiếc bánh dẻo để tổng số lãi thu được là lớn nhất (nếu sản xuất bao nhiêu cũng bán hết)?
Câu 2:
Một xưởng sản xuất hai loại sản phẩm, mỗi kg sản phẩm loại I cần 2kg nguyên liệu và 30 giờ, đem lại mức lời 40000 đồng. Mỗi kg sản phẩm loại II cần 4kg nguyên liệu và 15giờ, đem lại mức lời 30000 đồng. Xưởng có 200kg nguyên liệu và 1200 giờ làm việc. Nên sản xuất mỗi loại sản phẩm lần lượt là bao nhiêu để có mức lời cao nhất?
Câu 3:
Tìm tất cả các giá trị thực của tham số m để hệ bất phương trình
có nghiệm.
Câu 4:
Cho hệ bất phương trình
Xét các mệnh đề sau :
(1) : Với m< 0 , hệ luôn có nghiệm.
(2) : Với 0 ≤ m < 1/6 hệ vô nghiệm.
(3) : Với m = 1/6 hệ có nghiệm duy nhất.
Mệnh đề nào đúng?
Câu 7:
Điều kiện của m để bất phương trình (m+ 2) x > 2m2 - 6 (*) nghiệm đúng với mọi x < 1
Câu 8:
Cho bất phương trình :
Xét các mệnh đề sau:
(I) Bất phương trình tương đương với mx - 2 < 0;
(II) m ≥ 0 là điều kiện cần để mọi x < 1 là nghiệm của bất phương trình (*)
(III) Với m < 0 , tập nghiệm của bất phương trình là
Mệnh đề nào đúng?
Câu 9:
Cho hệ bất phương trình
Xét các mệnh đề sau:
(I) Khi m< 0 thì hệ bất phương trình đã cho vô nghiệm.
(II) Khi m= 0 thì hệ bất phương trình đã cho có tập nghiệm là R.
(III) Khi m ≥ 0 thì hệ bất phương trình đã cho có tập nghiệm là
(IV) Khi m > 0 thì hệ bất phương trình đã cho có tập nghiệm là
Trong các mệnh đề trên có bao nhiêu mệnh đề đúng ?
Câu 10:
Cho bất phương trình:
Các giá trị nào sau đây của m thì tập nghiệm của bất phương trình là
Câu 11:
Với giá trị nào của m thì bất phương trình m2x+ 4m - 3 < x + m2 vô nghiệm?
Câu 12:
Cho bất phương trình: mx+ 6< 2x+3m .
Tập nào sau đây là phần bù của tập nghiệm của bất phương trình trên với m< 2 :
Câu 13:
Tìm m nguyên để bất phương trình 3mx > x+ 2m-5 có tập nghiệm T mà (-1, +∞) ⊂ T. Khi đó:
Câu 14:
Cho bất phương trình: . Số các nghiệm nguyên của bất phương trình là:
Câu 15:
Với giá trị nào của m thì bất phương trình (m2-m) x+ m < 6x+2 có tập nghiệm là R?