Câu hỏi:
13/07/2024 115
Mệnh đề nào sau đây đúng?
Mệnh đề nào sau đây đúng?
A. ∃x ∈ ℤ, x2 – 4 = 0;
A. ∃x ∈ ℤ, x2 – 4 = 0;
B. ∀x ∈ ℤ, x2 + 1 chia hết cho 3;
B. ∀x ∈ ℤ, x2 + 1 chia hết cho 3;
C. ∀x ∈ ℤ, x2 > x;
C. ∀x ∈ ℤ, x2 > x;
D. ∃x ∈ ℤ, x2 + 1 = 0.
D. ∃x ∈ ℤ, x2 + 1 = 0.
Trả lời:
Đáp án đúng là: A.
A. Ta có:
x2 – 4 = 0 (*) ⇔ x2 = 4 ⇔ x = 2 hoặc x = – 2.
Ta thấy phương trình (*) có hai nghiệm phân biệt, hay nói cách khác phương trình (*) tồn tại hai giá trị nguyên của x là x = 2 và x = – 2 thỏa mãn.
Do đó mệnh đề ở câu A đúng.
B. Giả sử với x = 0 thì x2 + 1 = 02 + 1 = 1 không chia hết cho 3.
Do đó mệnh đề trên dùng kí hiệu “với mọi” là sai.
Vì vậy mệnh đề ở câu B sai.
C. Ta giả sử với x = 0.
⇒ x2 = 02 = 0 = x.
Do đó mệnh đề trên dùng kí hiệu “với mọi” là sai.
Vì vậy mệnh đề ở câu C sai.
D. Ta có:
x2 + 1 = 0 (**) ⇔ x2 = – 1 (vô nghiệm vì x2 luôn lớn hơn hoặc bằng 0).
Suy ra không có giá trị nguyên x nào thỏa mãn phương trình (**).
Do đó mệnh đề ở câu D sai.
Đáp án đúng là: A.
A. Ta có:
x2 – 4 = 0 (*) ⇔ x2 = 4 ⇔ x = 2 hoặc x = – 2.
Ta thấy phương trình (*) có hai nghiệm phân biệt, hay nói cách khác phương trình (*) tồn tại hai giá trị nguyên của x là x = 2 và x = – 2 thỏa mãn.
Do đó mệnh đề ở câu A đúng.
B. Giả sử với x = 0 thì x2 + 1 = 02 + 1 = 1 không chia hết cho 3.
Do đó mệnh đề trên dùng kí hiệu “với mọi” là sai.
Vì vậy mệnh đề ở câu B sai.
C. Ta giả sử với x = 0.
⇒ x2 = 02 = 0 = x.
Do đó mệnh đề trên dùng kí hiệu “với mọi” là sai.
Vì vậy mệnh đề ở câu C sai.
D. Ta có:
x2 + 1 = 0 (**) ⇔ x2 = – 1 (vô nghiệm vì x2 luôn lớn hơn hoặc bằng 0).
Suy ra không có giá trị nguyên x nào thỏa mãn phương trình (**).
Do đó mệnh đề ở câu D sai.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho mệnh đề sau: “… x ∈ ℝ, 4x2 – 1 = 0”.
Chỗ trống trong mệnh đề trên có thể điền kí hiệu nào dưới đây để mệnh đề đúng?
Cho mệnh đề sau: “… x ∈ ℝ, 4x2 – 1 = 0”.
Chỗ trống trong mệnh đề trên có thể điền kí hiệu nào dưới đây để mệnh đề đúng?
Câu 5:
Cho các mệnh đề sau:
(1) ∀x ∈ ℝ, |x| > 1 ⇒ x > 1.
(2) ∃x ∈ ℤ, 2x2 – 8 = 0.
(3) ∀x ∈ ℕ, 2x + 1 là số nguyên tố.
Trong các mệnh đề trên, có bao nhiêu mệnh đề đúng?
Cho các mệnh đề sau:
(1) ∀x ∈ ℝ, |x| > 1 ⇒ x > 1.
(2) ∃x ∈ ℤ, 2x2 – 8 = 0.
(3) ∀x ∈ ℕ, 2x + 1 là số nguyên tố.
Trong các mệnh đề trên, có bao nhiêu mệnh đề đúng?
Câu 6:
Cho mệnh đề : “∀x ∈ ℝ, x3 – 5x + 6 ≥ 0”.
Mệnh đề phủ định của mệnh đề trên là:
Cho mệnh đề : “∀x ∈ ℝ, x3 – 5x + 6 ≥ 0”.
Mệnh đề phủ định của mệnh đề trên là:
Câu 7:
Cho hai mệnh đề sau:
A: “∀x ∈ ℝ: x2 – 4 ≠ 0” ;
B: “∃x ∈ ℝ: x2 = x”.
Xét tính đúng sai của hai mệnh đề trên.
Cho hai mệnh đề sau:
A: “∀x ∈ ℝ: x2 – 4 ≠ 0” ;
B: “∃x ∈ ℝ: x2 = x”.
Xét tính đúng sai của hai mệnh đề trên.
Câu 8:
Cho mệnh đề: “∀x ∈ ℝ, x < 3 ⇒ x2 < 9”.
Mệnh đề trên được phát biểu như thế nào?
Cho mệnh đề: “∀x ∈ ℝ, x < 3 ⇒ x2 < 9”.
Mệnh đề trên được phát biểu như thế nào?
Câu 9:
Kí hiệu X là tập hợp tất cả các bạn học sinh x trong lớp 10A1, P(x) là mệnh đề chứa biến “x đạt học sinh giỏi”. Mệnh đề “∃x ∈ X, P(x)” khẳng định rằng:
Kí hiệu X là tập hợp tất cả các bạn học sinh x trong lớp 10A1, P(x) là mệnh đề chứa biến “x đạt học sinh giỏi”. Mệnh đề “∃x ∈ X, P(x)” khẳng định rằng: