Câu hỏi:
19/07/2024 165
Giả sử một máy bay cứu trợ đang bay theo phương ngang và bắt đầu thả hàng từ độ cao 80 m, lúc đó máy bay đang bay với vận tốc 50 m/s. Để thùng hàng cứu trợ rơi đúng vị trí được chọn, máy bay cần bắt đầu thả hàng từ vị trí cách vị trí được chọn bao nhiêu mét ? Biết rằng nếu chọn gốc tọa độ là hình chiếu trên mặt đất của vị trí hàng cứu trợ bắt đầu được thả, thì tọa độ của hàng cứu trợ được cho bởi hệ sau: \(\left\{ \begin{array}{l}x = {v_o}t\\y = h - \frac{1}{2}g{t^2}\end{array} \right.\)
trong đó, v0 là vận tốc ban đầu và h là độ cao tính từ khi hàng rời máy bay.
Lưu ý: Chuyển động này được xem là chuyển động ném ngang.
Giả sử một máy bay cứu trợ đang bay theo phương ngang và bắt đầu thả hàng từ độ cao 80 m, lúc đó máy bay đang bay với vận tốc 50 m/s. Để thùng hàng cứu trợ rơi đúng vị trí được chọn, máy bay cần bắt đầu thả hàng từ vị trí cách vị trí được chọn bao nhiêu mét ? Biết rằng nếu chọn gốc tọa độ là hình chiếu trên mặt đất của vị trí hàng cứu trợ bắt đầu được thả, thì tọa độ của hàng cứu trợ được cho bởi hệ sau: \(\left\{ \begin{array}{l}x = {v_o}t\\y = h - \frac{1}{2}g{t^2}\end{array} \right.\)
trong đó, v0 là vận tốc ban đầu và h là độ cao tính từ khi hàng rời máy bay.
Lưu ý: Chuyển động này được xem là chuyển động ném ngang.
A. \(\frac{{50\sqrt {10} }}{{9,8}}\) m;
B. \(\frac{{100\sqrt {10} }}{{9,8}}\)m;
C. \(\frac{{200\sqrt {10} }}{{9,8}}\)m;
D. \(\frac{{20\sqrt {10} }}{{9,8}}\)m.
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: C.
Theo đề bài, ta có biểu thức tọa độ của thùng hàng: \(\left\{ \begin{array}{l}x = 50t\\y = 80 - \frac{1}{2}g{t^2}\end{array} \right.\).
Đặt hệ trục tọa độ như hình vẽ. Khi thùng hàng rơi đúng vị trí, ta có:
y = 0 \( \Leftrightarrow 80 - \frac{1}{2}g{t^2} = 0 \Leftrightarrow \frac{1}{2}g{t^2} = 80 \Leftrightarrow g{t^2} = 160 \Leftrightarrow {t^2} = \frac{{160}}{g} \Leftrightarrow t = \frac{{\sqrt {160} }}{g}\)
Khi đó, ta có: \(x = 50.\frac{{\sqrt {160} }}{g} = \frac{{200\sqrt {10} }}{{9,8}}\) (m)
Vậy để thùng hàng cứu trợ rơi đúng vị trí được chọn, máy bay cần bắt đầu thả hàng từ vị trí cách vị trí được chọn \(\frac{{200\sqrt {10} }}{{9,8}}\) m.
Hướng dẫn giải:
Đáp án đúng là: C.
Theo đề bài, ta có biểu thức tọa độ của thùng hàng: \(\left\{ \begin{array}{l}x = 50t\\y = 80 - \frac{1}{2}g{t^2}\end{array} \right.\).
Đặt hệ trục tọa độ như hình vẽ. Khi thùng hàng rơi đúng vị trí, ta có:
y = 0 \( \Leftrightarrow 80 - \frac{1}{2}g{t^2} = 0 \Leftrightarrow \frac{1}{2}g{t^2} = 80 \Leftrightarrow g{t^2} = 160 \Leftrightarrow {t^2} = \frac{{160}}{g} \Leftrightarrow t = \frac{{\sqrt {160} }}{g}\)
Khi đó, ta có: \(x = 50.\frac{{\sqrt {160} }}{g} = \frac{{200\sqrt {10} }}{{9,8}}\) (m)
Vậy để thùng hàng cứu trợ rơi đúng vị trí được chọn, máy bay cần bắt đầu thả hàng từ vị trí cách vị trí được chọn \(\frac{{200\sqrt {10} }}{{9,8}}\) m.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cổng Arch tại thành phố St Louis của Mỹ có hình dạng là một parabol. Biết khoảng cách giữa hai chân cổng bằng 162 m. Trên thành cổng, tại vị trí có độ cao 43 m so với mặt đất, người ta thả một sợi dây chạm đất. Vị trí chạm đất của đầu sợi dây này cách chân cổng A một đoạn 10 m. Giả sử các số liệu trên là chính xác. Hãy tính độ cao của cổng Arch.
Câu 2:
Khi nuôi cá thí nghiệm trong hồ, một nhà sinh học thấy rằng: Nếu trên mỗi đơn vị diện tích của mặt hồ có n con cá thì trung bình mỗi con cá sau một vụ cân nặng P(n) = 360 – 10n. Hỏi phải thả bao nhiêu con cá trên một đơn vị diện tích để trọng lượng cá sau một vụ thu được nhiều nhất ?
Câu 3:
Một cửa hàng buôn giày nhập một đôi với giá là 40 đô. Cửa hàng ước tính rằng nếu đôi giày bán được với giá x đô thì mỗi tháng khách hàng sẽ mua 120 – x đôi giày. Hỏi cửa hàng bán một đôi giày giá bao nhiêu thì thu được nhiều lãi nhất.
Câu 4:
Một chiếc cổng hình parabol có phương trình \(y = - \frac{1}{2}{x^2}\). Biết cổng có chiều rộng d = 5 mét. Hãy tính chiều cao h của cổng.
Câu 5:
Chiếc cầu dây văng một nhịp được thiết kế hai bên thành cầu có dạng parabol và được cố định bằng các dây cáp song song.
Dựa vào bản vẽ ở Hình 14, hãy tính chiều dài tổng cộng của các dây cáp dọc ở hai mặt bên. Biết:
– Dây dài nhất là 5m, dây ngắn nhất là 0,8 m. Khoảng cách giữa các dây bằng nhau.
– Nhịp cầu dài 30 m.
– Cần tính thêm 5% chiều dài mỗi sợi dây cáp để neo cố định.
Chiếc cầu dây văng một nhịp được thiết kế hai bên thành cầu có dạng parabol và được cố định bằng các dây cáp song song.
Dựa vào bản vẽ ở Hình 14, hãy tính chiều dài tổng cộng của các dây cáp dọc ở hai mặt bên. Biết:
– Dây dài nhất là 5m, dây ngắn nhất là 0,8 m. Khoảng cách giữa các dây bằng nhau.
– Nhịp cầu dài 30 m.
– Cần tính thêm 5% chiều dài mỗi sợi dây cáp để neo cố định.