Câu hỏi:

10/12/2024 2,774

Có bao nhiêu số nguyên dương a sao cho ứng với mỗi a có đúng hai số nguyên b thỏa mãn (5b - 1)(a.2b - 5) < 0?


A. 20;



B. 21;


Đáp án chính xác

C. 22;

D. 19.

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Lời giải

(5b - 1)(a.2b - 5) = 0 5b1=0   a.2b5=0b=0      b=log25a

+) TH1:log25a<0a>0       a>5

Vì hàm số y = ax (a > 1) là hàm đồng biến nên

(5b - 1)(a.2b - 5) < 0

Yêu cầu của bài toán suy ra

3log25a<2185a<14

a40a>20

Mà a Î* Þ a Î {21; 22; ...; 40}

+) TH2:log25a>0a>0       0<a<5

Vì hàm số y = ax (a > 1) là hàm đồng biến nên

(5b - 1)(a.2b - 5) < 0 0<b<log25a

Yêu cầu của bài toán suy ra

2log25a<345a<8

a54a>58

Mà a Î* Þ a = 1

Vậy có 21 số nguyên a thỏa mãn yêu cầu của bài toán.

*Phương pháp giải:

 Sử dụng công thức log

*Lý thuyết:

1. Định nghĩa logarit

Cho hai số dương a; b với a ≠ 1. Số α thỏa mãn đẳng thức aα = b được gọi là logarit cơ số a của b và kí hiệu là logab.

α=  logab  aα  =  b

Ví dụ 1.

a) log3 27 = 3 vì 33 = 27.

b) log4116  =  2  42=  116.

– Chú ý: Không có logarit của số âm và số 0.

2. Tính chất của logarit

Cho hai số dương a và b; a ≠ 1. Ta có các tính chất sau đây:

loga1 = 0; logaa = 1

alogab    =b;  loga(aα)  =  α

Ví dụ 2.

42log43=  4log432=32=  19

log3127=log333  =  3

Xem thêm

Lý thuyết Lôgarit (2024) và bài tập có đáp án 

 

 

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Biết F (x) và G (x) là hai nguyên hàm của hàm số f (x) trên ℝ và 05fxdx=F5G0+a,a>0. Gọi S là diện tích hình phẳng giới hạn bỡi các đường y = F (x), y = G (x), x = 0 và x = 5. Khi S = 20 thì a bằng?

Xem đáp án » 23/07/2024 11,649

Câu 2:

Có bao nhiêu số nguyên thuộc tập xác định của hàm số y = log [(6 - x)(x + 2)]?

Xem đáp án » 23/07/2024 3,707

Câu 3:

Tập xác định của hàm số y = log3 (x - 4) là

Xem đáp án » 16/07/2024 1,521

Câu 4:

Chọn ngẫu nhiên một số từ tập hợp các số tự nhiên thuộc đoạn [40; 60]. Xác suất để chọn được số có chữ số hàng đơn vị lớn hơn chữ số hàng chục bằng

Xem đáp án » 18/07/2024 1,476

Câu 5:

Gọi z1 và z2 là hai nghiệm phức của phương trình z2 + z + 6 = 0. Khi đó z1 + z2 + z1z2 bằng:

Xem đáp án » 22/07/2024 1,191

Câu 6:

Cho các số phức z1, z2, z3 thỏa mãn |z1| = |z2| = 2|z3| = 2 và 3z1z2 = 4z3(z1 + z2). Gọi A, B, C lần lượt là các điểm biểu diễn của z1, z2, z3 trên mặt phẳng tọa độ. Diện tích tam giác ABC bằng

Xem đáp án » 21/07/2024 1,178

Câu 7:

Xét tất cả các số thực x, y sao cho  với mọi số thực dương a. Giá trị lớn nhất của biểu thức P = x2 + y2 + 4x - 3y bằng

Xem đáp án » 23/07/2024 1,022

Câu 8:

Với a là số thực dương tùy ý, 4loga  bằng

Xem đáp án » 21/07/2024 1,000

Câu 9:

Cho hàm số f (x) = mx4 + 2(m - 1)x2 với m là tham số thực. Nếu min0;2fx=f1  thì max0;2fx  bằng

Xem đáp án » 23/07/2024 984

Câu 10:

Trong không gian Oxyz, cho điểm A(0; -3; 2) và mặt phẳng (P): 2x - y + 3z + 5 = 0. Mặt phẳng đi qua A và song song với (P) có phương trình là

Xem đáp án » 17/07/2024 935

Câu 11:

Cho hình nón có góc ở đỉnh bằng 120° và chiều cao bằng 1. Gọi (S) là mặt cầu đi qua đỉnh và chứa đường tròn đáy của hình nón đã cho. Diện tích của (S) bằng

Xem đáp án » 23/07/2024 726

Câu 12:

Trong không gian Oxyz, phương trình mặt phẳng (Oyz) là

Xem đáp án » 20/07/2024 584

Câu 13:

Cho tam giác OIM vuông tại I có OI = 3 và IM = 4. Khi quay tam giác OIM quanh cạnh góc vuông OI thì đường gấp khúc OMI tạo thành hình nón có độ dài đường sinh bằng

Xem đáp án » 16/07/2024 579

Câu 14:

Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = 2 - 7i có tọa độ là

Xem đáp án » 16/07/2024 487

Câu 15:

Trong không gian Oxyz, cho điểm A(1; 2; -3). Hình chiếu vuông góc của A lên mặt phẳng (Oxy) có tọa độ là

Xem đáp án » 17/07/2024 456

Câu hỏi mới nhất

Xem thêm »
Xem thêm »