Câu hỏi:
21/07/2024 197Cho mẫu số liệu thống kê có n giá trị x1, x2, …, xn và số trung bình cộng là \(\overline x \). Ta gọi số: \({s^2} = \frac{{{{\left( {{x_1} - \overline x } \right)}^2} + {{\left( {{x_2} - \overline x } \right)}^2} + ... + {{\left( {{x_n} - \overline x } \right)}^2}}}{n}\) là:
A. Phương sai;
B. Độ lệch chuẩn;
C. Trung vị;
D. Mốt.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Cho mẫu số liệu thống kê có n giá trị x1, x2, …, xn và số trung bình cộng là \(\overline x \). Ta gọi số: \({s^2} = \frac{{{{\left( {{x_1} - \overline x } \right)}^2} + {{\left( {{x_2} - \overline x } \right)}^2} + ... + {{\left( {{x_n} - \overline x } \right)}^2}}}{n}\) là phương sai của mẫu số liệu trên.
Hướng dẫn giải
Đáp án đúng là: A
Cho mẫu số liệu thống kê có n giá trị x1, x2, …, xn và số trung bình cộng là \(\overline x \). Ta gọi số: \({s^2} = \frac{{{{\left( {{x_1} - \overline x } \right)}^2} + {{\left( {{x_2} - \overline x } \right)}^2} + ... + {{\left( {{x_n} - \overline x } \right)}^2}}}{n}\) là phương sai của mẫu số liệu trên.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Thời gian chạy 50 m của 20 học sinh được ghi lại trong bảng dưới đây:
Khoảng biến thiên của bảng số liệu trên là:
Câu 2:
Chọn khẳng định đúng: “Trong một mẫu số liệu, khoảng biến thiên là…”
Câu 4:
Giả sử Q1, Q2, Q3 là tứ phân vị của mẫu số liệu. Khoảng tứ phân vị của mẫu số liệu đó là:
Câu 5:
Tiền lương hàng tháng của 7 nhân viên trong một công ty du lịch lần lượt là: 6,5; 8,4; 6,9; 7,2; 2,5; 6,7; 3,0. (đơn vị: triệu đồng). Khoảng biến thiên của dãy số liệu thống kê trên bằng:
Câu 6:
Cho mẫu số liệu có phương sai là: s2 = 0,04. Độ lệch chuẩn của mẫu số liệu thống kê là: