Câu hỏi:

15/07/2024 158

Cho hai điểm A(–2; 1), B(3; 5) và đường thẳng d: \(\left\{ \begin{array}{l}x = - 5 + 2t\\y = 9 - 5t\end{array} \right.\). Tọa độ của điểm H d thỏa mãn \(\left| {\overrightarrow {HA} - 2\overrightarrow {HB} } \right|\) đạt giá trị nhỏ nhất là:

A. \(H\left( { - \frac{{93}}{{29}};\frac{{131}}{{29}}} \right)\);

Đáp án chính xác

B. \(H\left( {\frac{{93}}{{29}}; - \frac{{131}}{{29}}} \right)\);

C. \(H\left( { - \frac{{93}}{{29}}; - \frac{{131}}{{29}}} \right)\);

D. \(H\left( {\frac{{93}}{{29}};\frac{{131}}{{29}}} \right)\).

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Ta có H d. Suy ra H(–5 + 2t; 9 – 5t).

Ta có:

\(\overrightarrow {HA} = \left( { - 2t + 3;5t - 8} \right)\);

\(\overrightarrow {HB} = \left( { - 2t + 8;5t - 4} \right)\). Suy ra \(2\overrightarrow {HB} = \left( { - 4t + 16;10t - 8} \right)\).

Suy ra \(\overrightarrow {HA} - 2\overrightarrow {HB} = \left( {2t - 13; - 5t} \right)\).

Ta có \(\left| {\overrightarrow {HA} - 2\overrightarrow {HB} } \right| = \sqrt {{{\left( {2t - 13} \right)}^2} + {{\left( { - 5t} \right)}^2}} = \sqrt {29{t^2} - 52t + 169} \)

\( = \sqrt {29\left[ {{{\left( {t - \frac{{26}}{{29}}} \right)}^2} + \frac{{4225}}{{841}}} \right]} \)

Ta có \({\left( {t - \frac{{26}}{{29}}} \right)^2} \ge 0,\,\,\forall t \in \mathbb{R}\)

\( \Leftrightarrow {\left( {t - \frac{{26}}{{29}}} \right)^2} + \frac{{4225}}{{841}} \ge \frac{{4225}}{{841}},\,\,\forall t \in \mathbb{R}\)

\( \Leftrightarrow 29\left[ {{{\left( {t - \frac{{26}}{{29}}} \right)}^2} + \frac{{4225}}{{841}}} \right] \ge 29.\frac{{4225}}{{841}} = \frac{{4225}}{{29}},\,\,\forall t \in \mathbb{R}\)

\[ \Leftrightarrow \sqrt {29\left[ {{{\left( {t - \frac{{26}}{{29}}} \right)}^2} + \frac{{4225}}{{841}}} \right]} \ge \sqrt {\frac{{4225}}{{29}}} = \frac{{65\sqrt {29} }}{{29}},\,\,\forall t \in \mathbb{R}\].

Dấu “=” xảy ra \( \Leftrightarrow t = \frac{{26}}{{29}}\).

Với \(t = \frac{{26}}{{29}}\), ta có \(H\left( { - \frac{{93}}{{29}};\frac{{131}}{{29}}} \right)\).

Khi đó \(\left| {\overrightarrow {HA} - 2\overrightarrow {HB} } \right|\) đạt giá trị nhỏ nhất bằng \[\frac{{65\sqrt {29} }}{{29}}\] khi \(H\left( { - \frac{{93}}{{29}};\frac{{131}}{{29}}} \right)\).

Vậy ta chọn phương án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC có tọa độ đỉnh B(4; –3). Đường trung tuyến AM có phương trình \(\left\{ \begin{array}{l}x = 1 + 3t\\y = - 2 - 7t\end{array} \right.\). Đường cao AH có phương trình 2x + 5y + 66 = 0. Khi đó phương trình đường trung trực của cạnh AB có phương trình là:

Xem đáp án » 22/07/2024 757

Câu 2:

Cho đường thẳng ∆: \(\left\{ \begin{array}{l}x = 2 - 3t\\y = 1 + 2t\end{array} \right.\). Hoành độ hình chiếu của điểm M(4; 5) trên ∆ gần nhất với giá trị nào sau đây?

Xem đáp án » 17/07/2024 408

Câu 3:

Đường thẳng d trong hình bên biểu thị tổng lít nước được bơm vào một bể nước theo thời gian (đơn vị: giờ).

Media VietJack

Tổng lít nước mà bể đó chứa sau 15 giờ bằng:

Xem đáp án » 21/07/2024 166

Câu 4:

Cho điểm M nằm trên ∆: x + y – 1 = 0 và cách N(–1; 3) một khoảng bằng 5. Khi đó tọa độ điểm M là:

Xem đáp án » 16/07/2024 121

Câu hỏi mới nhất

Xem thêm »
Xem thêm »