Câu hỏi:
21/07/2024 192
Cho hai đại lượng x và y phụ thuộc vào nhau theo các hệ thức dưới đây. Trường hợp nào thì y không phải là hàm số của x?
A. 2x + y = 3;
B. y = x2 – 5;
C. y2 = x + 8;
D. y = 3x3 – 3x + 5.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Ta thấy trong cả bốn hệ thức trên, đại lượng x đều nhận giá trị thuộc tập số D = ℝ.
• Ở ba phương án A, B, D, ta thấy với mỗi giá trị x ∈ ℝ, ta đều xác định được một và chỉ một giá trị tương ứng y ∈ ℝ.
Do đó các hệ thức ở đáp án A, B, D đều cho ta một hàm số.
• Ở phương án C, ta thấy hệ thức đã cho không thỏa mãn định nghĩa hàm số. Cụ thể:
Với x = 1, ta có y2 = 1 + 8 = 9.
Nghĩa là, y = 3 hoặc y = –3.
Do đó tồn tại một giá trị x = 1 ∈ ℝ, ta xác định được hai giá trị tương ứng y ∈ ℝ là y = 3 hoặc y = –3.
Vì vậy hệ thức ở phương án C không cho ta một hàm số y của x.
Vậy ta chọn phương án C.
Hướng dẫn giải
Đáp án đúng là: C
Ta thấy trong cả bốn hệ thức trên, đại lượng x đều nhận giá trị thuộc tập số D = ℝ.
• Ở ba phương án A, B, D, ta thấy với mỗi giá trị x ∈ ℝ, ta đều xác định được một và chỉ một giá trị tương ứng y ∈ ℝ.
Do đó các hệ thức ở đáp án A, B, D đều cho ta một hàm số.
• Ở phương án C, ta thấy hệ thức đã cho không thỏa mãn định nghĩa hàm số. Cụ thể:
Với x = 1, ta có y2 = 1 + 8 = 9.
Nghĩa là, y = 3 hoặc y = –3.
Do đó tồn tại một giá trị x = 1 ∈ ℝ, ta xác định được hai giá trị tương ứng y ∈ ℝ là y = 3 hoặc y = –3.
Vì vậy hệ thức ở phương án C không cho ta một hàm số y của x.
Vậy ta chọn phương án C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Hàm số y = f(x) có đồ thị như hình vẽ bên.
Khẳng định nào sau đây đúng?
Câu 2:
Xét sự đồng biến, nghịch biến của hàm số \[f\left( x \right) = \frac{3}{x}\] trên khoảng (0; +∞). Khẳng định nào sau đây đúng?
Câu 3:
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{ - 1}}{{x - 1}},\,\,\,\,\,\,\,\,khi\,\,x \le 0\\\sqrt {x + 2} ,\,\,\,khi\,\,x > 0\end{array} \right.\). Tập xác định của hàm số là tập hợp nào sau đây?
Câu 4:
Xét tính đồng biến, nghịch biến của hàm số \(y = \sqrt[3]{x} + 3\).
Câu 6:
Tập xác định D của hàm số \[f\left( x \right) = 2\sqrt {x + 1} - \frac{5}{x}\].
Câu 7:
Điểm nào sau đây thuộc đồ thị hàm số \[y = \frac{{2x - 1}}{{x\left( {3x - 4} \right)}}\]?