Câu hỏi:

18/07/2024 120

Cho góc α thỏa mãn cotα = 3. Tính P = sin4α – cos4α.

A. \( - \frac{4}{5}\);

Đáp án chính xác

B.\( - \frac{9}{{10}}\);

C. \(\frac{4}{5}\);

D. \(\frac{9}{{10}}\).

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải:

Đáp án đúng là: A.

Ta có P = sin4α – cos4α \( = \left( {{{\sin }^2}\alpha - {{\cos }^2}\alpha } \right).\left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right) = {\sin ^2}\alpha - {\cos ^2}\alpha \).

Do cotα = 3, suy ra sinα ≠ 0.

Chia cả hai vế của biểu thức cho sin2α ta được: \(\frac{P}{{{{\sin }^2}\alpha }} = 1 - {\cot ^2}\alpha \)

\( \Leftrightarrow P\left( {1 + {{\cot }^2}\alpha } \right) = 1 - {\cot ^2}\alpha \)

Thay cotα = 3 vào ta được: P.(1 + 9) = 1 – 9 \( \Leftrightarrow P = \frac{{ - 8}}{{10}} = \frac{{ - 4}}{5}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho góc α (0° < α < 180°) thỏa mãn \(\cos \alpha = \frac{5}{{13}}\).

Giá trị của biểu thức \(P = 2\sqrt {4 + 5\tan \alpha } + 3\sqrt {9 - 12\cot \alpha } \) là:

Xem đáp án » 20/07/2024 254

Câu 2:

Cho góc α thỏa mãn \(\tan \alpha = 3\) và 0° < α < 90°. Tính P = cosα + sinα.

Xem đáp án » 23/07/2024 240

Câu 3:

Cho góc α với \(\cos \alpha = \frac{{\sqrt 2 }}{2}\). Tính giá trị của biểu thức A = 2sin2α + 5cos2α.

Xem đáp án » 17/07/2024 236

Câu 4:

Tính giá trị của cosα biết 0° < α < 180°, α ≠ 90°, \(\sin \alpha = \frac{2}{5}\) và tanα + cotα > 0.

Xem đáp án » 22/07/2024 179

Câu 5:

Cho góc α thỏa mãn \(\sin \alpha = \frac{{12}}{{13}}\) và 90° < α < 180°. Tính cosα.

Xem đáp án » 23/07/2024 140

Câu 6:

Cho góc α với 0° < α < 180°. Tính giá trị của cosα, biết \(\tan \alpha = - 2\sqrt 2 \) .

Xem đáp án » 19/07/2024 140

Câu 7:

Cho góc α (0° < α < 180°) với \(\cos \alpha = \frac{1}{3}\). Giá trị của sinα bằng:

Xem đáp án » 23/07/2024 134

Câu 8:

Tính các giá trị lượng giác còn lại của góc α biết sinα = \[\frac{1}{3}\] và 90° < α < 180°.

Xem đáp án » 17/07/2024 130

Câu 9:

Cho góc α (0° < α < 180°) với \(\cot \alpha = - \sqrt 2 \). Tìm mệnh đề sai trong các mệnh đề sau:

Xem đáp án » 19/07/2024 125

Câu 10:

Cho góc α thỏa mãn tanα = 5. Tính \(P = \frac{{2\sin \alpha + 3\cos \alpha }}{{3\sin \alpha - 2\cos \alpha }}\).

Xem đáp án » 19/07/2024 121

Câu 11:

Cho \(\cos \alpha = \frac{1}{3}\). Tính \(A = \frac{{\tan \alpha + 4\cot \alpha }}{{\tan \alpha + \cot \alpha }}\).

Xem đáp án » 19/07/2024 107

Câu hỏi mới nhất

Xem thêm »
Xem thêm »