Câu hỏi:
12/07/2024 233Cho đường thẳng d có phương trình: \(\left\{ \begin{array}{l}x = 2 + 3t\\y = - 3 - t\end{array} \right.\). Một vectơ chỉ phương của d có tọa độ là:
A. (2; –3);
B. (3; –1);
C. (3; 1);
D. (3; –3).
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Phương trình tham số của d: \(\left\{ \begin{array}{l}x = 2 + 3t\\y = - 3 - t\end{array} \right.\)
Suy ra đường thẳng d có một vectơ chỉ phương là \(\vec u = \left( {3; - 1} \right)\).
Vậy ta chọn phương án B.
Hướng dẫn giải
Đáp án đúng là: B
Phương trình tham số của d: \(\left\{ \begin{array}{l}x = 2 + 3t\\y = - 3 - t\end{array} \right.\)
Suy ra đường thẳng d có một vectơ chỉ phương là \(\vec u = \left( {3; - 1} \right)\).
Vậy ta chọn phương án B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Phương trình x2 + y2 – 2ax – 2by + c = 0 là phương trình đường tròn khi và chỉ khi:
Câu 2:
Trong mặt phẳng tọa độ Oxy, cho \(\vec a = \left( {{a_1};{a_2}} \right),\,\,\vec b = \left( {{b_1};{b_2}} \right)\) và \(\vec x = \left( {{a_1} + {b_1};{a_2} + {b_2}} \right)\). Khi đó \(\vec x\) bằng:
Câu 3:
Trong mặt phẳng tọa độ Oxy, cho G(3; 5). Tọa độ của \(\overrightarrow {OG} \) là:
Câu 4:
Cho đường thẳng d1, d2 có vectơ pháp tuyến lần lượt là \[{\vec n_1} = \left( {a;b} \right),\,\,{\vec n_2} = \left( {c;d} \right)\]. Kết luận nào sau đây đúng?