Câu hỏi:
20/07/2024 497
Cho ∆ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Hỏi ∆ADE là tam giác gì?
Cho ∆ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Hỏi ∆ADE là tam giác gì?
A. Tam giác cân;
A. Tam giác cân;
B. Tam giác đều;
C. Tam giác vuông cân;
D. Tam giác vuông.
Trả lời:
Đáp án đúng là: A
Vì ∆ABC cân tại A nên ta có (1).
Ta có (hai góc kề bù) (2).
Lại có (hai góc kề bù) (3).
Từ (1), (2), (3), ta suy ra .
Xét ∆ABD và ∆ACE, có:
AB = AC (∆ABC cân tại A),
(chứng minh trên),
BD = CE (giả thiết).
Do đó ∆ABD = ∆ACE (c.g.c).
Suy ra AD = AE (cặp cạnh tương ứng).
Do đó ∆ADE cân tại A (dấu hiệu nhận biết).
Vậy ta chọn đáp án A.
Đáp án đúng là: A
Vì ∆ABC cân tại A nên ta có (1).
Ta có (hai góc kề bù) (2).
Lại có (hai góc kề bù) (3).
Từ (1), (2), (3), ta suy ra .
Xét ∆ABD và ∆ACE, có:
AB = AC (∆ABC cân tại A),
(chứng minh trên),
BD = CE (giả thiết).
Do đó ∆ABD = ∆ACE (c.g.c).
Suy ra AD = AE (cặp cạnh tương ứng).
Do đó ∆ADE cân tại A (dấu hiệu nhận biết).
Vậy ta chọn đáp án A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho ∆ABC cân tại A. Vẽ đường phân giác trong của và đường phân giác ngoài của , chúng cắt nhau tại I. Khẳng định nào sau đây đúng?
Câu 4:
Cho ∆ABC cân tại A có cạnh bên bằng 3 cm. Gọi D là một điểm thuộc cạnh đáy BC. Qua D, kẻ các đường thẳng song song với các cạnh bên, chúng cắt AB và AC theo thứ tự tại F và E. Tổng DE + DF bằng:
Cho ∆ABC cân tại A có cạnh bên bằng 3 cm. Gọi D là một điểm thuộc cạnh đáy BC. Qua D, kẻ các đường thẳng song song với các cạnh bên, chúng cắt AB và AC theo thứ tự tại F và E. Tổng DE + DF bằng:
Câu 5:
Cho ∆ABC có AB < AC. Ở phía ngoài ∆ABC, vẽ ∆ABD và ∆ACE vuông cân tại A. So sánh AD và AE.
Cho ∆ABC có AB < AC. Ở phía ngoài ∆ABC, vẽ ∆ABD và ∆ACE vuông cân tại A. So sánh AD và AE.
Câu 6:
Cho tam giác ABC cân đỉnh A có các đường trung tuyến BD, CE. Tam giác nào dưới đây là tam giác cân?
Cho tam giác ABC cân đỉnh A có các đường trung tuyến BD, CE. Tam giác nào dưới đây là tam giác cân?
Câu 8:
Cho ∆ABC cân tại A, tia phân giác trong của cắt BC tại D. Khẳng định nào dưới đây sai?
Cho ∆ABC cân tại A, tia phân giác trong của cắt BC tại D. Khẳng định nào dưới đây sai?
Câu 10:
Cho ∆ABC đều. Lấy điểm M, N trên các cạnh AB, AC sao cho AM = AN. ∆AMN là tam giác gì?
Cho ∆ABC đều. Lấy điểm M, N trên các cạnh AB, AC sao cho AM = AN. ∆AMN là tam giác gì?
Câu 11:
Hoàn thành định nghĩa của tam giác cân:
Tam giác cân là tam giác:
Hoàn thành định nghĩa của tam giác cân:
Tam giác cân là tam giác:
Câu 13:
Cho ∆ABC vuông tại A có . Kẻ AH ⊥ BC tại H và tia phân giác AD của (D ∈ BC). Trên cạnh AC lấy điểm E sao cho AE = AH. Trên tia đối của tia HA lấy điểm F sao cho HF = EC. Khẳng định nào sau đây đúng nhất?
Cho ∆ABC vuông tại A có . Kẻ AH ⊥ BC tại H và tia phân giác AD của (D ∈ BC). Trên cạnh AC lấy điểm E sao cho AE = AH. Trên tia đối của tia HA lấy điểm F sao cho HF = EC. Khẳng định nào sau đây đúng nhất?