Trắc nghiệm Giải hệ phương trình bằng phương cách lập hệ phương trình (có đáp án)
Trắc nghiệm Toán 9 Bài 5: Giải hệ phương trình bằng phương cách lập hệ phương trình
-
361 lượt thi
-
18 câu hỏi
-
30 phút
Danh sách câu hỏi
Câu 1:
23/07/2024Một ô tô đi quãng đường AB với vận tốc 50 km/h, rồi đi tiếp quãng đường BC với vận tốc 45 km/h. Biết quãng đường tổng cộng dài 165 km và thời gian ô tô đi trên quãng đường AB ít hơn thời gian đi trên quãng đường BC là 30 phút. Tính thời gian ô tô đi trên đoạn đường AB.
Gọi thời gian ô tô đi trên mỗi đoạn đường AB và BC lần lượt là x, y
(x > 0; y > 0,5; đơn vị: giờ).
Ta có hệ phương trình:
Vậy thời gian ô tô đi hết quãng đường AB là 1,5 giờ. Thời gian ô tô đi hết quãng đường BC là 2 giờ.
Đáp án cần chọn là: B
Câu 2:
22/07/2024Một hình chữ nhật có chu vi 300cm. Nếu tăng chiều rộng thêm 5cm và giảm chiều dài 5 cm thì diện tích tăng 275 cm2. Tính chiều dài và chiều rộng của hình chữ nhật.
Gọi chiều dài và chiều rộng của khu vương hình chữ nhật lần lượt là x, y
(150 > x > y > 0; cm)
Diện tích ban đầu của khu vương là x.y (cm2)
Vì hình chữ nhật có chu vi bằng 300 (cm)
nên ta có (x + y). 2 = 300
Nếu tăng chiều rộng thêm 5 cm và giảm chiều dài 5cm thì diện tích tăng 275cm2Nên ta có phương trình
(x − 5).(y + 5) = xy + 275
Suy ra hệ phương trình:
Vậy chiều rộng của hình chữ nhật
ban đầu là 45 cm
Chiều dài của hình chữ nhật
ban đầu là 105 cm
Đáp án cần chọn là: B
Câu 3:
22/07/2024Một ô tô dự định đi từ A đến B trong một thời gian nhất định. Nếu xe chạy mỗi giờ nhanh hơn 10 km thì đến nơi sớm hơn dự định 3 giờ, còn nếu xe chạy chậm lại mỗi giờ 10 km thì đến nơi chậm mất 5 giờ. Tính vận tốc của xe lúc ban đầu.
Gọi vận tốc lúc đầu của xe là
x (km/h; x > 10), thời gian theo dự định là y (y > 3) (giờ)
Nếu xe chạy mỗi giờ nhanh hơn 10km thì đến nơi sớm hơn dự định 3 giờ nên ta có phương trình (x + 10) (y – 3) = xy
Suy ra hệ phương trình :
Vậy vận tốc ban đầu là 40 km/h
Đáp án cần chọn là: A
Câu 4:
21/07/2024Hai bạn A và B cùng làm chung một công việc thì hoàn thành sau 6 ngày. Hỏi nếu A làm một nửa công việc rồi nghỉ thì B hoàn thành nốt công việc trong bao lâu? Biết rằng nếu làm một mình xong công việc thì B làm lâu hơn A là 9 ngày.
Gọi thời gian A, B làm một mình xong công việc lần lượt là x, y (y > x > 6, đơn vị: ngày)
Mỗi ngày các bạn A, B lầm lượt làm được và 1y (công việc)
Vì hai bạn A và B cùng làm chung một công việc thì hoàn thành sau 6 ngày nên ta có:
(1)
Do làm một mình xong công việc thì B làm lâu hơn A là 9 ngày nên ta có phương trình:
y – x = 9 (2)
Từ (1) và (2) ta có hệ phương trình:
Vậy B hoàn thành cả công việc trong 18 ngày.
Suy ra sau khi A làm một mình xong nửa công việc rồi nghỉ, B hoàn thành công việc còn lại trong 9 ngày.
Đáp án cần chọn là: A
Câu 5:
20/07/2024Hai giá sách có 450 cuốn. Nếu chuyển 50 cuốn từ giá thứ nhất sang giá thứ hai thì số sách trên giá thứ hai bằng số sách ở giá thứ nhất. Tính số sách trên giá thứ hai.
Gọi số sách trên hai giá lần lượt là x, y
(0 < x, y < 450, cuốn)
Vì hai giá sách có 450 cuốn nên ta có phương trình: x + y = 450 (cuốn)
Nếu chuyển 50 cuốn từ giá thứ nhất sang giá thứ hai thì số sách trên giá thứ hai bằng số sách ở giá thứ nhất nên ta có ot
Suy ra hệ phương trình
Vậy số sách trên giá thứ nhất là 300 cuốn, số sách trên giá thứ hai là 150 cuốn.
Đáp án cần chọn là: A
Câu 6:
22/07/2024Trên một cánh đồng cấy 50 ha lúa giống mới và 30 ha lúa giống cũ, thu hoạch được tất cả 410 tấn thóc. Hỏi năng suất lúa cũ trên 1 ha là bao nhiêu, biết rằng 5 ha trồng lúa mới thu hoạch được nhiều hơn 6 ha trồng lúa cũ là 0,5 tấn.
Gọi năng suất lúa mới và lúa cũ trên 1 ha lần lượt là x; y (x, y > 0) đơn vị: tấn/ha
Vì đồng cấy 50 ha lúa giống mới và 30 ha lúa giống cũ, thu hoạch được tất cả 410 tấn thóc nên ta có 50x + 30y = 410
Vì 5 ha trồng lúa mới thu hoạch được nhiều hơn 6 ha trồng lúa cũ là 0,5 tấn nên ta có phương trình: 5x – 6y = 0,5
Suy ra hệ phương trình:
Vậy năng suất lúa cũ trên 1 ha là 4,5 tấn.
Đáp án cần chọn là: C
Câu 7:
20/07/2024Một cano chạy trên sông trong 7 giờ, xuôi dòng 108 km và ngược dòng 63 km. Một lần khác cũng trong 7 giờ, cano xuôi dòng 81 km và ngược dòng 84 km. Tính vận tốc nước chảy.
Gọi vận tốc thực của cano là x (km/h, x > 0), vận tốc dòng nước là y (km/h, 0 < y < x)
Vận tốc cano khi xuôi dòng là x + y (km/h), vận tốc cano khi ngược dòng là: x – y (km/h)
Cano chạy trên sông trong 7 giờ, xuôi dòng 108 km và ngược dòng 63 km nên ta có phương trình
Cano chạy trên sông trong 7 giờ, xuôi dòng 81 km và ngược dòng 84 km nên ta có phương trình:
Ta có hệ phương trình
Câu 8:
20/07/2024Một tam giác có chiều cao bằng cạnh đáy. Nếu chiều cao tăng thêm 3 dm và cạnh đáy giảm đi 4 dm thì diện tích của nó tăng thêm 12 dm2. Tính diện tích của tam giác ban đầu.
Gọi chiều cao của tam giác là h, cạnh đáy tam giác là a. (h, a , a > 3, dm)
Diện tích tam giác ban đầu là ah (dm2)
Vì chiều cao bằng cạnh đáy nên ta có phương trình: h=34a
Nếu chiều cao tăng thêm 3 dm và cạnh đáy giảm đi 3 dm thì diện tích của nó tăng thêm 12 dm2.
Nên ta có phương trình
Ta có hệ phương trình:
Vậy chiều cao của tam giác bằng 44 dm, cạnh đáy tam giác bằng 33 dm
Suy ra diện tích tam giác ban đầu là (dm2)
Đáp án cần chọn là: D
Câu 9:
23/07/2024Một ô tô đi quãng đường AB với vận tốc 52 km/h, rồi đi tiếp quãng đường BC với vận tốc 42 km/h. Biết quãng đường tổng cộng dài 272 km và thời gian ô tô đi trên quãng đường AB ít hơn thời gian đi trên quãng đường BC là 2 giờ. Tính thời gian ô tô đi trên đoạn đường BC.
Gọi thời gian ô tô đi trên mỗi đoạn đường AB và BC lần lượt là x, y
(x > 0; y > 2; đơn vị: giờ).
Quãng đường AB là 52x (km),
quãng đường BC là 42 (km)
mà tổng quãng đường 272 km
nên ta có phương trình 52x + 42y = 272
Vì thời gian đi quãng đường AB ít hơn thời gian đi quãng đường BC là 2 giờ
nên ta có phương trình y – x = 2
Từ đó ta có hệ phương trình:
Vậy thời gian ô tô đi hết quãng đường AB là 2 giờ. Thời gian ô tô đi hết quãng đường BC là 4 giờ.
Đáp án cần chọn là: B
Câu 10:
19/07/2024Hai người đi xe máy xuất phát đồng thời từ hai thành phố cách nhau 225 km. Họ đi ngược chiều và gặp nhau sau 3 giờ. Hỏi vận tốc của người thứ nhất, biết rằng vận tốc người thứ nhất lớn hơn người thứ hai 5 km/h.
Gọi vận tốc của người thứ nhất và người thứ hai lần lượt là x, y (km.h, x > 5, y > 0)
Quãng đường người thứ nhất đi được khi gặp nhau là 3x (km)
Quãng đường người thứ hai đi được đến khi gặp nhau là 3y (km)
Ta có hệ phương trình
Vậy vận tốc của người thứ nhất là 40 km/h
Đáp án cần chọn là: A
Câu 11:
13/07/2024Hai trường có tất cả 300 học sinh tham gia một cuộc thi. Biết trường A có 75% học sinh đạt, trường 2 có 60% đạt nên cả 2 trường có 207 học sinh đạt. Số học sinh dự thi của trường A và trường B lần lượt là:
Gọi số học sinh của trường thứ nhất dự thi là x (học sinh) (x , x < 300)
Số học sinh của trường thứ hai dự thi là y (học sinh) (y , y < 300)
Hai trường có tất cả 300 học sinh tham gia cuộc thi nên ta có phương trình:
x + y = 300 (1)
Trường A có 75% học sinh đạt, trường 2 có 60% đạt nên cả 2 trường có 207 học sinh đạt, ta có
(2)
Từ (1) và (2) ta có hệ phương trình:
Vậy số học sinh của trường thứ nhất dự thi là 180 học sinh; Số học sinh của trường thứ hai dự thi là 120 học sinh.
Đáp án cần chọn là: C
Câu 12:
17/07/2024Hai bạn A và B cùng làm chung một công việc thì hoàn thành sau 8 ngày. Hỏi nếu A làm riêng hết công việc rồi nghỉ thì B hoàn thành nốt công việc trong thời gian bao lâu? Biết rằng nếu làm một mình xong công việc thì A làm nhanh hơn B là 12 ngày.
Gọi thời gian A, B làm một mình xong công việc lần lượt là x, y (y > x > 0; y > 12, đơn vị: ngày)
Mỗi ngày các bạn A, B lầm lượt làm được và 1y (công việc)
Vì hai bạn A và B cùng làm chung một công việc thì hoàn thành sau 8 ngày nên ta có:
(1)
Do làm một mình xong công việc thì B làm lâu hơn A là 12 ngày nên ta có phương trình:
y – x = 12 (2)
Từ (1) và (2) ta có hệ phương trình
Giải (*):
x2 – 4x – 96 = 0
x2 + 8x – 12x – 96 = 0
x(x+8) – 12(x + 8) = 0
(x – 12) (x + 8) = 0
Với x = 12 y = x + 12 = 24
Vậy B hoàn thành cả công việc trong 24 ngày
Suy ra sau khi A làm một mình xong công việc rồi nghỉ, B hoàn thành công việc cong lại trong 23.24=16 ngày.
Đáp án cần chọn là: A
Câu 13:
21/07/2024Trong tháng đầu hai tổ sản xuất được 800 sản phẩm. Sang tháng thứ 2, tổ 1 sản xuất vượt mức 12%, tổ 2 giảm 10% so với tháng đầu nên cả hai tổ làm được 786 sản phẩm. Tính số sản phẩm tổ 1 làm được trong tháng đầu.
Gọi số sản phẩm tổ 1 và tổ 2 làm được trong tháng đầu lần lượt là
x, y (x, y , x, y < 800 sản phẩm)
Số sản phẩm tổ 1 và tổ 2 làm được trong tháng hai là 112%.x và 90%.y sản phẩm
Ta có hệ phương trình:
Vậy số sản phẩm tổ 1 làm được trong tháng đầu là 300 sản phẩm.
Đáp án cần chọn là: B
Câu 14:
23/07/2024Trong một kì thi, hai trường A, B có tổng cộng 350 học sinh dự thi. Kết quả hai trường đó có 338 học sinh trúng tuyển. Tính ra thì trường A có 97% và trường B có 96% số học sinh trúng tuyển. Hỏi trường B có bao nhiêu học sinh dự thi.
Gọi số học sinh dự thi của hai trường A, B lần lượt là x, y (350 > x, y > 0) (học sinh)
Vì hai trường A, B có tổng cộng 350 học sinh dự thi
nên ta có phương trình
x + y = 350 (học sinh)
Vì trường A có 97% và trường B có 96% số học sinh trúng tuyển và cả hai trường đó có 338 học sinh trúng tuyển nên ta có phương trình
97%.x +96%.y = 338
Suy ra hệ phương trình:
Vậy trường B có 150 học sinh dự thi
Đáp án cần chọn là: B
Câu 15:
12/07/2024Một chiếc cano đi xuôi dòng theo một khúc sông trong 3 giờ và đi ngược dòng trong 4 giờ, được 380 km. Một lần khác cano này xuôi dòng trong 1 giờ và ngược dòng trong vòng 30 phút được 85 km. Hãy tính vận tốc của dòng nước (vận tốc thật của cano và vận tốc dòng nước ở hai lần là như nhau).
Gọi vận tốc thực của cano là x (km/h, x > 0), vận tốc dòng nước là y (km/h, 0 < y < x)
Vận tốc cano khi xuôi dòng là x + y (km/h), vận tốc cano khi ngược dòng là: x – y (km/h)
Cano đi xuôi dòng theo một khúc sông trong 3 giờ và đi ngược dòng trong 4 giờ, được 380 km nên ta có phương trình:
3 (x + y) + 4 (x – y) = 380
Cano xuôi dòng trong 1 giờ và ngược dòng trong 30 phút được 85 km nên ta có phương trình:
x + y + (x – y) = 85
Ta có hệ phương trình:
Vậy vận tốc dòng ngước là 5 km/h
Đáp án cần chọn là: A
Câu 16:
23/07/2024Trên một cánh đồng cấy 60 ha lúa giống mới và 40 ga lúa giống cũ, thu hoạch được tất cả 460 tấn thóc. Hỏi năng suất lúa mới trên 1 ha là bao nhiêu, biết rằng 3 ha trồng lúa mới thu hoạch được ít hơn 4 ha trồng lúa cũ là 1 tấn.
Gọi năng suất lúa mới và lúa cũ trên 1 ha lần lượt là x; y (x, y > 0) đơn vị: tấn/ha
Vì cấy 60 ha lúa giống mới và 40 ga lúa giống cũ, thu hoạch được tất cả 460 tấn thóc nên ta có
60x + 40y = 460
Vì 3 ha trồng lúa mới thu hoạch được ít hơn 4 ha trồng lúa cũ là 1 tấn nên ta có phương trình:
4y – 3x = 1
Suy ra hệ phương trình:
Vậy năng suất lúa mới trên 1 ha là 5 tấn
Đáp án cần chọn là: A
Câu 17:
19/07/2024Hai vòi ngước cùng chảy vào một bể không có nước thì sau 1,5 giờ sẽ đầy bể. Nếu mở vòi 1 chảy trong 0,25 giờ rồi khóa lại và mở vòi 2 chảy trong giờ thì được 15 bể. Hỏi nếu vòi 2 chảy riêng thì bao lâu đầy bể?
Gọi thời gian vòi 1 chảy một mình đầy bể là x (h), thời gian vòi 2 chảy một mình đầy bể là y (h) (x; y > 1,5)
Mỗi giờ vòi I chảy được (bể),
vòi II chảy được bể
nên cả hai vòi chảy được bể
Hai vòi cùng chảy thì sau 1,5h sẽ đầy bể nên ta có phương trình:
(1)
Nếu mở vòi 1 chảy trong 0,25h rồi khóa lại và mở vòi 2 chảy trong h thì được bể nên ta có phương trình
(2)
Từ (1) và (2) ta có hệ phương trình:
Vậy thời gian vòi 2 chảy một mình đầy bể là 2,5h
Đáp án cần chọn là: A
Câu 18:
22/07/2024Một mảnh đất hình chữ nhật có chu vi bằng 42m. Đường chéo hình chữ nhật dài 15m. Tính độ dài chiều rộng mảnh đất hình chữ nhật.
Gọi chiều dài và chiều rộng của mảnh đất hình chữ nhật lần lượt là: x, y
(21 > x > y > 0; m)
Vì mảnh đất hình chữ nhật có chu vi bằng 42m nên ta có (x + y). 2 = 42
Đường chéo hình chữ nhật dài 15m nên
ta có phương trình: x2 + y2 = 152
Suy ra hệ phương trình:
Giải phương trình (1) ta được:
2x2 – 42x + 216 = 0
x2 – 21x + 108 = 0
(x – 12) (x – 9) = 0
Vậy chiều rộng mảnh đất ban đầu là 9m
Đáp án cần chọn là: C
Có thể bạn quan tâm
- Trắc nghiệm Giải hệ phương trình bằng phương cách lập hệ phương trình (có đáp án) (360 lượt thi)
- Bài 5: Giải bài toán bằng cách lập hệ phương trình (762 lượt thi)
Các bài thi hot trong chương
- Bài 2: Hệ hai phương trình bậc nhất hai ẩn (977 lượt thi)
- Bài 3: Giải hệ phương trình bằng phương pháp thế (965 lượt thi)
- Bài 1: Phương trình bậc nhất hai ẩn (955 lượt thi)
- Ôn tập chương 3 (878 lượt thi)
- Bài 4: Giải hệ phương trình bằng phương pháp cộng đại số (588 lượt thi)
- Trắc nghiệm Hệ hai phương trình bậc nhất hai ẩn (có đáp án) (454 lượt thi)
- Trắc nghiệm Phương trình bậc nhất hai ẩn (có đáp án) (415 lượt thi)
- Trắc nghiệm Giải hệ phương trình bằng phương cách lập hệ phương trình (Tiếp theo) (có đáp án) (372 lượt thi)
- Trắc nghiệm Giải hệ phương trình bằng phương pháp thế (có đáp án) (347 lượt thi)
- Trắc nghiệm Ôn tập chương 3 (có đáp án) (339 lượt thi)