Thi Online Trắc nghiệm Toán 10 CTST Bài 1. Giá trị lượng giác của một góc từ 0° đến 180° có đáp án
Dạng 3: Tính giá trị và rút gọn biểu thức lượng giác có đáp án
-
1127 lượt thi
-
12 câu hỏi
-
30 phút
Danh sách câu hỏi
Câu 1:
11/07/2024Hướng dẫn giải:
Áp dụng bảng giá trị lượng giác của một số góc đặc biệt, ta có:
\[A = 4\sin 60^\circ + 3\cos 150^\circ - \cot 45^\circ = 4.\frac{{\sqrt 3 }}{2} + 3.\left( { - \frac{{\sqrt 3 }}{2}} \right) - 1 = \frac{{\sqrt 3 - 2}}{2}\].
Câu 2:
13/10/2024Tính giá trị của biểu thức
\[B = \cos 0^\circ + \cos 20^\circ + \cos 40^\circ + ... + \cos 160^\circ + \cos 180^\circ \].
*Phương pháp giải:
- Áp dụng tính chất về góc(cung) hơn kém nhau hay chính là 180 để giải quyết
ví dụ: cos(
*Lời giải:
\[B = \cos 0^\circ + \cos 20^\circ + \cos 40^\circ + ... + \cos 160^\circ + \cos 180^\circ \]
\[ = \left( {\cos 0^\circ + \cos 180^\circ } \right) + \left( {\cos 20^\circ + \cos 160^\circ } \right) + ... + \left( {\cos 80^\circ + \cos 100^\circ } \right)\]
\[ = \left( {\cos 0^\circ + \cos \left( {180^\circ - 0^\circ } \right)} \right) + \left( {\cos 20^\circ + \cos \left( {180^\circ - 20^\circ } \right)} \right) + ... + \left( {\cos 80^\circ + \cos \left( {180^\circ - 80^\circ } \right)} \right)\]
\[ = \left( {\cos 0^\circ - \cos 0^\circ } \right) + \left( {\cos 20^\circ - \cos 20^\circ } \right) + ... + \left( {\cos 80^\circ - \cos 80^\circ } \right)\]
= 0
*Một số dạng bài thêm về cung và góc lượng giác:
Dạng 2.1: Tính các giá trị lượng giác còn lại khi đã cho trước một giá trị
* Phương pháp giải: Để làm dạng bài tập này, ta sử dụng các công thức lượng giác cơ bản, giá trị lượng giác của các cung có liên quan đặc biệt và dấu của các giá trị lượng giác.
Dạng 2.2: Chứng minh một đẳng thức giữa các giá trị lượng giác
* Phương pháp giải: Sử dụng công thức lượng giác và các giá trị lượng giác của các góc liên quan đặc biệt để thực hiện phép biến đổi.
Ta lựa chọn một trong các cách biến đổi sau:
* Cách 1: Biến đổi một vế thành vế còn lại (vế trái thành vế phải hoặc vế phải thành vế trái)
* Cách 2: Biến đổi đẳng thức cần chứng minh về một đẳng thức đã biết là luôn đúng.
* Cách 3: Biến đổi một đẳng thức đã biết là luôn đúng thành đẳng thức cần chứng minh.
Dạng 2.3: Rút gọn biểu thức lượng giác
* Phương pháp giải: Để giải dạng bài này, ta sẽ áp dụng các công thức lượng giác cơ bản và các giá trị lượng giác của các góc có mối liên hệ đặc biệt để đưa biểu thức ban đầu trở nên đơn giản, ngắn gọn hơn.
Xem thêm các bài viết liên quan hay, chi tiết:
Lý thuyết Giá trị lượng giác của một góc từ 0° đến 180° – Toán 10 Chân trời sáng tạo
Trắc nghiệm Toán 10 CTST Bài 1. Giá trị lượng giác của một góc từ 0° đến 180° có đáp án (Phần 2)
Giải Toán 10 Bài 1 (Chân trời sáng tạo): Giá trị lượng giác của một góc từ 0 độ đến 180 độ
Câu 3:
18/07/2024Hướng dẫn giải:
Đáp án đúng là: D.
Áp dụng bảng giá trị lượng giác của một số góc đặc biệt, ta có:
\[A = a\sin 90^\circ + b\cos 90^\circ + c\cos 180^\circ \]
= a . 1 + b . 0 + c . (– 1) = a – c.
Câu 4:
19/07/2024Hướng dẫn giải:
Đáp án đúng là: C.
Ta có: \[B = 5 - {\sin ^2}90^\circ + 2{\cos ^2}60^\circ - 3{\tan ^2}45^\circ \]
\[ = 5 - {\left( {\sin 90^\circ } \right)^2} + 2{\left( {\cos 60^\circ } \right)^2} - 3{\left( {\tan 45^\circ } \right)^2}\]
Áp dụng bảng giá trị lượng giác của một số góc đặc biệt, ta có:
\[B = 5 - {1^2} + 2.{\left( {\frac{1}{2}} \right)^2} - 3.{\left( {\frac{{\sqrt 2 }}{2}} \right)^2} = 5 - 1 + \frac{1}{2} - \frac{3}{2} = 3\].
Câu 5:
11/07/2024Rút gọn biểu thức \[C = \sin 45^\circ + 3\cos 60^\circ - 4\tan 30^\circ + 5\cot 120^\circ + 6\sin 135^\circ \] ta được kết quả là
Hướng dẫn giải:
Đáp án đúng là A.
Áp dụng bảng giá trị lượng giác của một số góc đặc biệt, ta có:
\[C = \sin 45^\circ + 3\cos 60^\circ - 4\tan 30^\circ + 5\cot 120^\circ + 6\sin 135^\circ \]
\[ = \frac{{\sqrt 2 }}{2} + 3.\frac{1}{2} - 4.\frac{{\sqrt 3 }}{3} - 5.\frac{{\sqrt 3 }}{3} + 6.\frac{{\sqrt 2 }}{2} = \frac{3}{2} + \frac{{7\sqrt 2 }}{2} - 3\sqrt 3 \].
Câu 6:
19/07/2024Biết sin α + cos α = \(\sqrt 2 \). Giá trị của biểu thức P = sin α . cos α bằng:
Hướng dẫn giải:
Đáp án đúng là: A.
Ta có sin α + cos α = \(\sqrt 2 \)⇒ (sin α + cos α)2 = 2
⇔ sin2α + 2 sin α . cos α + cos2α = 2
⇔ (sin2α + cos2α) + 2 sin α . cos α = 2
⇔ 1 + 2 sin α . cos α = 2
\( \Rightarrow \sin \alpha .\cos \alpha = \frac{{2 - 1}}{2} = \frac{1}{2}\).
Vậy \(P = \frac{1}{2}\).
Câu 7:
17/07/2024Kết quả của phép tính E = tan5° . tan10° . tan15° ... tan 75° . tan80° . tan85° là:
Hướng dẫn giải:
Đáp án đúng là: B.
Ta có:
E = tan5° . tan10° . tan15° ... tan75° . tan80° . tan85°
= (tan5° . tan85°) . (tan10° . tan80°) . (tan15°. tan75°) ... (tan40° . tan50°) . tan45°
= (tan5° . tan(90° – 5°)) . (tan10° . tan(90° – 10°)) . (tan15°. tan(90° – 15°)) ... (tan40° . tan(90° – 40°)) . tan45°
= (tan5° . cot5°) . (tan10° . cot10°) . (tan15°. cot15°) ... (tan40° . cot40°) . tan45°
= 1 . 1 . 1 ... 1 . 1
= 1.
Câu 8:
21/07/2024Giá trị của biểu thức P = cot1° . cot2° . cot3° ... cot89° là
Hướng dẫn giải:
Đáp án đúng là: C.
Ta có P = cot1° . cot2° . cot3° ... cot89°
= (cot1° . cot89°) . (cot2° . cot88°) . (cot3° . cot87°) ... (cot44° . cot46°) . cot45°
= (cot1° . cot(90° – 1°)) . (cot2° . cot(90° – 2°)) . (cot3° . cot(90° – 3°)) ... (cot44° . cot(90° – 44°)) . cot45°
= (cot1° . tan1°) . (cot2° . tan2°) . (cot3° . tan3°) ... (cot44° . tan44°) . cot45°
= 1 . 1 . 1 ... 1 . 1 = 1.
Vậy giá trị của biểu thức P là một số nguyên dương.
Câu 9:
11/07/2024Biết sin α + cos α = \(\sqrt 2 \). Giá trị của biểu thức Q = sin4α – cos4α là:
Hướng dẫn giải:
Đáp án đúng là: C.
Ta có: Q = sin4α – cos4α = (sin2α + cos2α) . (sin2α – cos2α)
= 1 . (sinα – cosα) . (sinα + cosα)
= \(\sqrt 2 \)(sinα – cosα).
Mặt khác: sin α + cos α = \(\sqrt 2 \)⇒ (sin α + cos α)2 = 2
⇔ sin2α + 2 sin α . cos α + cos2α = 2
⇔ (sin2α + cos2α) + 2 sin α . cos α = 2
⇔ 1 + 2 sin α . cos α = 2
\( \Rightarrow \sin \alpha .\cos \alpha = \frac{{2 - 1}}{2} = \frac{1}{2}\).
Do đó: (sinα – cosα)2 = sin2α + cos2α – 2.sinα.cosα = 1 – 2 . \(\frac{1}{2}\) = 0.
Suy ra: sin α – cos α = 0.
Vậy Q = 0.
Câu 10:
16/07/2024Giá trị biểu thức \[D = {\sin ^2}1^\circ + {\sin ^2}37^\circ + {\sin ^2}53^\circ + {\sin ^2}89^\circ \] là
Hướng dẫn giải:
Đáp án đúng là: C.
Ta có \[D = {\sin ^2}1^\circ + {\sin ^2}37^\circ + {\sin ^2}53^\circ + {\sin ^2}89^\circ \]
\[ = \left( {{{\sin }^2}1^\circ + {{\sin }^2}89^\circ } \right) + \left( {{{\sin }^2}37^\circ + {{\sin }^2}53^\circ } \right)\]
\[ = \left( {{{\sin }^2}1^\circ + {{\sin }^2}\left( {90^\circ - 1^\circ } \right)} \right) + \left( {{{\sin }^2}37^\circ + {{\sin }^2}\left( {90^\circ - 37^\circ } \right)} \right)\]
\[ = \left( {{{\sin }^2}1^\circ + {{\left( {\sin \left( {90^\circ - 1^\circ } \right)} \right)}^2}} \right) + \left( {{{\sin }^2}37^\circ + {{\left( {\sin \left( {90^\circ - 37^\circ } \right)} \right)}^2}} \right)\]
\[ = \left( {{{\sin }^2}1^\circ + {{\left( {\cos 1^\circ } \right)}^2}} \right) + \left( {{{\sin }^2}37^\circ + {{\left( {\cos 37^\circ } \right)}^2}} \right)\]
\[ = \left( {{{\sin }^2}1^\circ + {{\cos }^2}1^\circ } \right) + \left( {{{\sin }^2}37^\circ + {{\cos }^2}37^\circ } \right)\]
= 1 + 1 = 2.
Vậy D = 2.
Câu 11:
21/07/2024Biết tan α + cot α = 3. Giá trị của biểu thức tan2 α + cot2 α bằng:
Hướng dẫn giải:
Đáp án đúng là: B.
Ta có tan α + cot α = 3 \( \Rightarrow {\left( {\tan \alpha + \cot \alpha } \right)^2} = 9\)
\( \Leftrightarrow {\tan ^2}\alpha + 2.\tan \alpha .\cot \alpha + {\cot ^2}\alpha = 9\)
\( \Leftrightarrow {\tan ^2}\alpha + {\cot ^2}\alpha + 2.1 = 9\)
\( \Leftrightarrow {\tan ^2}\alpha + {\cot ^2}\alpha = 7\).
Vậy tan2 α + cot2 α = 7.
Câu 12:
14/07/2024Tính giá trị của biểu thức sau:
\[P = 4\tan \left( {x + 4^\circ } \right).\sin x.\cot \left( {4x + 26^\circ } \right) + \frac{{8{{\tan }^2}\left( {3^\circ - x} \right)}}{{1 + {{\tan }^2}\left( {5x + 3^\circ } \right)}} + 8{\cos ^2}\left( {x - 3^\circ } \right)\]khi x = 30°.
Hướng dẫn giải:
Đáp án đúng là: C.
Thay x = 30° vào biểu thức đã cho ta được
\[P = 4.\tan 34^\circ .\sin 30^\circ .\cot 146^\circ + \frac{{8{{\tan }^2}\left( { - 27^\circ } \right)}}{{1 + {{\tan }^2}153^\circ }} + 8{\cos ^2}27^\circ \]
\[ = 4.\tan 34^\circ .\sin 30^\circ .\cot \left( {180^\circ - 34^\circ } \right) + 8{\left( {\tan \left( { - 27^\circ } \right)} \right)^2}.\frac{1}{{1 + {{\tan }^2}153^\circ }} + 8{\cos ^2}27^\circ \]
\[ = 4\tan 34^\circ .\frac{1}{2}.\left( { - \cot 34^\circ } \right) + 8{\left( { - \tan 27^\circ } \right)^2}.\frac{1}{{\frac{1}{{{{\cos }^2}153^\circ }}}} + 8{\cos ^2}27^\circ \]
\[ = - 2\left( {\tan 34^\circ .\cot 34^\circ } \right) + 8{\tan ^2}27^\circ .{\cos ^2}153^\circ + 8{\cos ^2}27^\circ \]
\( = - 2 + 8{\tan ^2}27^\circ .{\left( {\cos \left( {180^\circ - 27^\circ } \right)} \right)^2} + 8{\cos ^2}27^\circ \)
\( = - 2 + 8.\frac{{{{\sin }^2}27^\circ }}{{{{\cos }^2}27^\circ }}.{\left( { - \cos 27^\circ } \right)^2} + 8{\cos ^2}27^\circ \)
\( = - 2 + 8.\frac{{{{\sin }^2}27^\circ }}{{{{\cos }^2}27^\circ }}.{\cos ^2}27^\circ + 8{\cos ^2}27^\circ \)
\( = - 2 + 8{\sin ^2}27^\circ + 8{\cos ^2}27^\circ \)
\( = - 2 + 8\left( {{{\sin }^2}27^\circ + {{\cos }^2}27^\circ } \right)\)
= – 2 + 8 . 1 = – 2 + 8 = 6.
Vậy khi x = 30° thì P = 6.
Bài thi liên quan
-
Dạng 1: Xác định giá trị lượng giác của góc đặc biệt có đáp án
-
13 câu hỏi
-
30 phút
-
-
Dạng 2: Xác định dấu của các giá trị lượng giác có đáp án
-
12 câu hỏi
-
30 phút
-
-
Dạng 4: Chứng minh đẳng thức lượng giác có đáp án
-
12 câu hỏi
-
30 phút
-
-
Dạng 5: Cho một giá trị lượng giác, tính các giá trị lượng giác còn lại hoặc tính giá trị của biểu thức có đáp án
-
12 câu hỏi
-
30 phút
-
-
Dạng 6: Sử dụng máy tính cầm tay để tính giá trị lượng giác của một góc có đáp án
-
12 câu hỏi
-
30 phút
-
Có thể bạn quan tâm
- Thi Online Trắc nghiệm Toán 10 CTST Bài 1. Giá trị lượng giác của một góc từ 0° đến 180° có đáp án (1126 lượt thi)
- Thi Online Trắc nghiệm Toán 10 CTST Bài 2. Định lý côsin và định lý sin có đáp án (745 lượt thi)
- Thi Online Trắc nghiệm Toán 10 CTST Bài 3. Giải tam giác và ứng dụng thực tế có đáp án (369 lượt thi)
Các bài thi hot trong chương
- Thi Online Trắc nghiệm Toán 10 CTST Bài 2. Hàm số bậc hai có đáp án (2420 lượt thi)
- Thi Online Trắc nghiệm Toán 10 CTST Bài 4. Tích vô hướng của hai vectơ có đáp án (2338 lượt thi)
- Thi Online Trắc nghiệm Toán 10 CTST Bài 1: Mệnh đề có đáp án (1289 lượt thi)
- Thi Online Trắc nghiệm Toán 10 CTST Bài 2: Tìm tổng của hai hay nhiều vectơ có đáp án (1062 lượt thi)
- Thi Online Trắc nghiệm Toán 10 CTST Bài 3. Tích của một số với một vectơ có đáp án (997 lượt thi)
- Thi Online Trắc nghiệm Toán 10 CTST Bài 1. Số gần đúng và sai số có đáp án (989 lượt thi)
- Thi Online Trắc nghiệm Toán 10 CTST Bài 1. Hàm số và đồ thị có đáp án (813 lượt thi)
- Thi Online Trắc nghiệm Toán 10 CTST Bài 2: Tập hợp có đáp án (798 lượt thi)
- Thi Online Trắc nghiệm Toán 10 CTST Bài 2: Hệ bất phương trình bậc nhất hai ẩn có đáp án (754 lượt thi)
- Thi Online Trắc nghiệm Toán 10 CTST Bài 3. Các số đặc trưng đo xu thế trung tâm của mẫu số liệu có đáp án (735 lượt thi)