Giải bài tập trang 39 Chuyên đề Toán 10 Bài 2 - Chân trời sáng tạo

Với Giải bài tập trang 39 Chuyên đề Toán 10 trong Bài 2: Nhị thức Newton sách Chuyên đề Toán lớp 10 Chân trời sáng tạo  hay nhất, chi tiết sẽ giúp học sinh dễ dàng trả lời các câu hỏi & làm bài tập Chuyên đề Toán 10 trang 39.

1 8,129 20/07/2022


Giải bài tập trang 39 Chuyên đề Toán 10 Bài 2 - Chân trời sáng tạo

Thực hành 5 trang 39 Chuyên đề Toán 10: Chứng minh rằng, với mọi n*, ta có

Cn0Cn1+Cn2Cn3++(1)nCnn=0.

Lời giải:

Xét khai triển:

(1 + x)n = =Cn01n+Cn11n1x+Cn21n2x2+Cn31n3x3++Cnnxn

=Cn0+Cn1x+Cn2x2+Cn3x3++Cnnxn.

Thay x = –1 ta được:

(1 – 1)n =Cn01n+Cn11n1x+Cn21n2x2+Cn31n3x3++Cnnxn

=Cn0+Cn1x+Cn2x2+Cn3x3++Cnnxn.

Vận dụng trang 39 Chuyên đề Toán 10: Trong hộp A có 10 quả cầu được đánh số từ 1 đến 10. Người ta lấy một số quả cầu từ hộp A rồi cho vào hộp B. Có tất cả bao nhiêu cách lấy, tính cả trường hợp lấy không quả (tức không lấy quả nào)?

Lời giải:

Số cách lấy k quả cầu từ hộp A rồi cho vào hộp B là C10k với 0 ≤ k ≤ 10.

Như vậy có tất cả C100+C101+C102+...+C109+C1010 cách.

Lại có C100+C101+C102+...+C109+C1010=210=1024

nên có tổng cộng 1024 cách lấy.

Bài 1 trang 39 Chuyên đề Toán 10:

Khai triển biểu thức:

a) (x – 2y)6;

b) (3x – 1)5.

Lời giải:

Sử dụng tam giác Pascal, ta có:

a) (x – 2y)6

=x6+6x52y+15x42y2+20x32y3+15x22y4+6x2y5+2y6

=x612x5y+60x4y2160x3y3+240x2y412xy5+64y6.

b) (3x – 1)5

=3x5+53x41+103x312+103x213+53x14+15

=243x5405x4+270x390x2+15x1.

Bài 2 trang 39 Chuyên đề Toán 10: Tìm hệ số của x10 trong khai triển của biểu thức (2 – x)12.

Lời giải:

Áp dụng công thức nhị thức Newton, ta có:

(2 – x)12 = C120212+C121211x+...+C12k212kxk+...+C1212x12

=C120212+C1212111x+...+C12k212k1kxk+...+C1212112x12.

Số hạng chứa x10 ứng với giá trị k = 10. Hệ số của số hạng này là C121021210110=264.

Bài 3 trang 39 Chuyên đề Toán 10:

Biết rằng a là một số thực khác 0 và trong khai triển của (ax + 1)6, hệ số của x4 gấp bốn lần hệ số của x2. Tìm giá trị của a.

Lời giải:

Áp dụng công thức nhị thức Newton, ta có:

(ax + 1)6 = C60ax6+C61ax51+...+C6kax6k1k+...+C6616

=C60a6x6+C61a5x5+...+C6ka6kx6k+...+1.

Số hạng chứa x4 ứng với giá trị k = 2. Hệ số của số hạng này là C62a62=15a4;

Số hạng chứa x2 ứng với giá trị k = 4. Hệ số của số hạng này là C64a64=15a2.

Theo giả thiết, ta có 15a4 = 4 . 15a2, suy ra a = 2 hoặc a = –2.

Vậy a = 2 hoặc a = –2.

Bài 4 trang 39 Chuyên đề Toán 10:

Biết rằng hệ số của x2 trong khai triển của (1 + 3x)n là 90. Tìm giá trị của n.

Lời giải:

Áp dụng công thức nhị thức Newton, ta có:

(1 + 3x)n = Cn01n+Cn11n13x+...+Cnk1nk3xk+...+Cnn3xn

=1+Cn13x+...+Cnk3kxk+...+Cnn3nxn.

Số hạng chứa x2 ứng với giá trị k = 2. Hệ số của số hạng này là Cn232=9nn12.

Theo giả thiết, ta có

9nn12=90nn1=20n=5    (TM)n=4​​  L.

Vậy n = 5.

Bài 5 trang 39 Chuyên đề Toán 10: Chứng minh công thức nhị thức Newton (công thức (1), trang 35 ) bằng phương pháp quy nạp toán học.

Lời giải:

+) Với n = 1, ta có: (a + b)1 = a + b = C10a1+C11b1.

Vậy công thức đúng với n = 1.

+) Với k ≥ 1 là một số nguyên dương tuỳ ý mà công thức đúng đúng, ta phải chứng minh công thức cũng đúng với k + 1, tức là:

(a+b)k+1=Ck+10ak+1+Ck+11a(k+1)1b+...+Ck+1(k+1)1ab(k+1)1+Ck+1k+1bk+1.

Thật vậy, theo giả thiết quy nạp ta có:

(a+b)k=Ck0ak+Ck1ak1b+...+Ckk1abk1+Ckkbk.

Khi đó:

(a+b)k+1=a+ba+bk

=aa+bk+ba+bk

=aCk0ak+Ck1ak1b+...+Ckk1abk1+Ckkbk

+bCk0ak+Ck1ak1b+...+Ckk1abk1+Ckkbk

Chuyên đề Toán 10 Bài 2: Nhị thức Newton - Chân trời sáng tạo (ảnh 1)

(vì Cki+Cki+1=Ck+1i+1  0ik, i  ℕ, k *)

=Ck+10ak+1+Ck+11a(k+1)1b+...+Ck+1(k+1)1ab(k+1)1+Ck+1k+1bk+1.

Vậy công thức cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, công thức đã cho đúng với mọi n  *.

Bài 6 trang 39 Chuyên đề Toán 10:

Biết rằng (3x – 1)7 = a0 + a1x + a2x2 + a3x3 + a4x4 + a5x5 + a6x6 + a7x7. Hãy tính:

a) a0 + a1 + a2 + a3 + a4 + a5 + a6 + a7;

b) a0 + a2 + a4 + a6.

Lời giải:

Có (3x – 1)7

=C703x7+C713x61+C723x512+C733x413

+C743x314+C753x215+C763x116+C7717

= 2187x7 – 5103x6 + 5103x5 – 2835x4 + 945x3 – 189x2 + 21x – 1.

a) a0 + a1 + a2 + a3 + a4 + a5 + a6 + a7

= (–1) + 21 + (–189) + 945 + (–2835) + 5103 + (–5103) + 2187 = 128.

b) a0 + a2 + a4 + a6

= (–1) + (–189) + (–2835) + (–5103) = –8128.

Bài 7 trang 39 Chuyên đề Toán 10: Một tập hợp có 12 phần tử thì có tất cả bao nhiêu tập hợp con?

Lời giải:

Vì tập hợp đã cho có 12 phần tử nên số tập hợp con có k phần tử của nó là: C12k.

Như vậy tổng số tập con của tập hợp này là: C120+C121+C122+...+C1211+C1212.

Lại có C120+C121+C122+...+C1211+C1212=212=4096.

Vậy một tập hợp có 12 phần tử thì có tất cả 4096 tập hợp con.

Bài 8 trang 39 Chuyên đề Toán 10: Từ 15 bút chì màu có màu khác nhau đôi một,

a) Có bao nhiêu cách chọn ra một số bút chì màu, tính cả trường hợp không chọn cái nào?

b) Có bao nhiêu cách chọn ra ít nhất 8 bút chì màu?

Lời giải:

a) Có C150 cách chọn ra 0 bút chì màu;

C151 cách chọn ra 1 bút chì màu;

C152 cách chọn ra 2 bút chì màu;

...

C1515 cách chọn ra 15 bút chì màu.

Vậy có tổng cộng C150+C151+C152+...+C1514+C1515=215=32768 cách chọn ra một số bút chì màu.

b) Số cách chọn ra ít nhất 8 bút chì màu là: C150+C151+C152+...+C157+C158.

Vì:

C150=C1515,  C151=C1514,C152=C1513,...,  C157=C158

nên:

C150+C151+C152+...+C157=12C150+C151+C152+...+C1514+C1515=12.32768=16384

C150+C151+C152+...+C157+C158=16384+6345=22819.

Vậy có 22819 cách chọn ra ít nhất 8 bút chì màu.

Xem thêm lời giải bài tập Chuyên đề Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Giải bài tập trang 34, 35 Chuyên đề Toán 10 Bài 2

Giải bài tập trang 37, 38 Chuyên đề Toán 10 Bài 2

1 8,129 20/07/2022


Xem thêm các chương trình khác: