Cho đường tròn (O), đường kính AB, điểm C nằm giữa A và O
Với giải bài tập 86 trang 172 sbt Toán lớp 9 Tập 1 được biên soạn lời giải chi tiết sẽ giúp học sinh biết cách làm bài tập môn Toán 9. Mời các bạn đón xem:
Giải SBT Toán 9 Bài 9: Ôn tập chương 2
Bài 86 trang 172 SBT Toán lớp 9 Tập 1: Cho đường tròn (O), đường kính AB, điểm C nằm giữa A và O. Vẽ đường tròn (O’) có đường kính CB
a) Hai đường tròn (O) và (O’) có vị trí tương đối như thế nào đối với nhau?
b) Kẻ dây DE của đường tròn (O) vuông góc với AC tại trung điểm H của AC. Tứ giác ADCE là hình gì? Vì sao?
c) Gọi K là giao điểm của DB với đường tròn (O’). Chứng minh rằng ba điểm E, C, K thẳng hàng.
d) Chứng minh rằng HK là tiếp tuyến của đường tròn (O’)
Lời giải:
a)
Vì O, O’ và B thẳng hàng nên:
O’B < OB O’ nằm giữa O và B
Ta có: OO’ = OB - O’B
Do đó, đường tròn (O’) tiếp xúc với đường tròn (O) tại B
b) Ta có:
HA = HC (gt)
AB DE tại H (gt)
Mà AB là đường kính, DE là dây cung
HD = HE (đường kính vuông góc với dây cung)
Do đó, tứ giác ADCE có hai đường chéo DE và AC cắt nhau tại trung điểm của mỗi đường nên nó là hình bình hành
Lại có: AC DE
Do đó, tứ giác ADCE là hình thoi
c)
Tam giác ABD nội tiếp trong đường tròn (O) có AB là đường kính nên vuông tại D
AD BD
Tứ giác ADCE là hình thoi nên EC // AD
EC BD (1)
Tam giác BCK nội tiếp trong đường tròn (O’) có BC là đường kính nên tam giác BCK vuông tại K
CK BD (2)
Từ (1) và (2) suy ra EC trùng với CK
Vậy E, C, K thẳng hàng.
d)
Tam giác DEK vuông tại K có KH là trung tuyến ứng với cạnh huyền DE nên:
HK = HE = DE (tính chất đường trung tuyến trong tam giác vuông)
Do đó, tam giác EHK cân tại H
(3)
Ta có: O’C = O’K nên tam giác O’KC cân tại O’
Mà: (hai góc đối đỉnh)
(4)
Từ (3) và (4) ta suy ra
(5)
Tam giác CEH vuông tại H nên ta có:
(6)
Từ (5) và (6) ta suy ra
tại K
Vậy HK là tiếp tuyến của đường tròn O’
Xem thêm lời giải sách bài tập Toán lớp 9 hay, chi tiết khác:
Bài 81 trang 171 SBT Toán lớp 9 Tập 1: Cho đoạn thẳng AB, điểm C nằm giữa AB...
Bài 82 trang 171 SBT Toán lớp 9 Tập 1: Cho hai đường tròn (O) và (O’) tiếp xúc ngoài tại A...
Bài 83 trang 171 SBT Toán lớp 9 Tập 1: Cho hai đường tròn (O) và (O’) cắt nhau tại A và B, OO’ = 3cm...
Bài 84 trang 171 SBT Toán lớp 9 Tập 1: Cho tam giác ABC vuông tại A (AB < AC) nội tiếp trong đường tròn (O)...
Bài 85 trang 172 SBT Toán lớp 9 Tập 1: Cho đường tròn (O), đường kính AB, điểm M thuộc đường tròn...
Bài 87 trang 172 SBT Toán lớp 9 Tập 1: Cho hai đường tròn (O; R) và (O’; R’) tiếp xúc ngoài tại A (R > R’)...
Bài 88 trang 172 SBT Toán lớp 9 Tập 1: Cho nửa đường tròn tâm O có đường kính AB...
Bài tập bổ sung:
Bài II.1 trang 173 SBT Toán lớp 9 Tập 1: Tỉ số bán kính đường tròn nội tiếp và đường tròn ngoại tiếp một tam giác đều...
Bài II.2 trang 173 SBT Toán lớp 9 Tập 1: Cho nửa đường tròn (O) đường kính AB...
Bài II.3 trang 173 SBT Toán lớp 9 Tập 1: Cho đường tròn (O) và điểm A cố định trên đường tròn...
Xem thêm các chương trình khác:
- Giải sgk Hóa học 9 (sách mới) | Giải bài tập Hóa 9
- Giải sbt Hóa học 9
- Giải vở bài tập Hóa học 9
- Lý thuyết Hóa học 9
- Các dạng bài tập Hóa học lớp 9
- Tóm tắt tác phẩm Ngữ văn 9 (sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Soạn văn 9 (hay nhất) | Để học tốt Ngữ văn 9 (sách mới)
- Soạn văn 9 (ngắn nhất)
- Văn mẫu 9 (sách mới) | Để học tốt Ngữ văn 9 Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Tác giả - tác phẩm Ngữ văn 9 (sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Giải sgk Tiếng Anh 9 (thí điểm)
- Giải sgk Tiếng Anh 9 (sách mới) | Để học tốt Tiếng Anh 9
- Giải sbt Tiếng Anh 9
- Giải sbt Tiếng Anh 9 (thí điểm)
- Giải sgk Sinh học 9 (sách mới) | Giải bài tập Sinh học 9
- Giải vở bài tập Sinh học 9
- Lý thuyết Sinh học 9
- Giải sbt Sinh học 9
- Giải sgk Vật Lí 9 (sách mới) | Giải bài tập Vật lí 9
- Giải sbt Vật Lí 9
- Lý thuyết Vật Lí 9
- Các dạng bài tập Vật lí lớp 9
- Giải vở bài tập Vật lí 9
- Giải sgk Địa Lí 9 (sách mới) | Giải bài tập Địa lí 9
- Lý thuyết Địa Lí 9
- Giải Tập bản đồ Địa Lí 9
- Giải sgk Tin học 9 (sách mới) | Giải bài tập Tin học 9
- Lý thuyết Tin học 9
- Lý thuyết Giáo dục công dân 9
- Giải vở bài tập Lịch sử 9
- Giải Tập bản đồ Lịch sử 9
- Lý thuyết Lịch sử 9
- Lý thuyết Công nghệ 9