Câu hỏi:
10/01/2025 16Phương trình mặt phẳng đi qua điểm A(1; 2; -1) và vuông góc với hai mặt phẳng có phương trình 2x + y = 0 và x = z + 1
A. x - 2y + z + 4 = 0
B. x - 2y + z - 4 = 0
C. x - 2y - 2z + 1 = 0
D. 2x - y - z + 1 = 0
Trả lời:
Đáp án đúng là: A
* Lời giải:
Hai mặt phẳng có phương trình 2x + y = 0 và x = z + 1 lần lượt có hai véc-tơ pháp tuyến là
Phương trình mặt phẳng vuông góc với hai mặt phẳng trên nên suy ra véc-tơ pháp tuyến vuông góc với hai véc-tơ pháp tuyến
Ta suy ra được
= (-1; 2; -1) = -(1; -2; 1)
Phương trình mặt phẳng đi qua A(1; 2; -1) nhận (1; -2; 1) làm véc-tơ pháp tuyến là
(x - 1) - 2(y - 2) + (z + 1) = 0
==> x - 2y + z + 4 = 0.
* Phương pháp giải:
Xác định vecto pháp tuyến từ hai phương trình 2x+y=0 và x=z+1
Phương tình cần tìm vuông góc với hai mặt phẳng trên nên sẽ tìm ra được vecto pháp tuyến từ hai vecto pháp tuyến trên
Từ đó viết ra được phương tình mặt phẳng cần tìm
* Lý thuyết nắm thêm
Trong không gian, ba trục Ox, Oy, Oz đôi một vuông góc với nhau tại gốc O của mỗi trục. Gọi lần lượt là các vectơ đơn vị trên các trục Ox, Oy, Oz.
• Hệ ba trục như vậy được gọi là hệ trục tọa độ Descartes vuông góc Oxyz, hay đơn giản là hệ tọa độ Oxyz.
• Điểm O được gọi là gốc tọa độ.
• Các mặt phẳng (Oxy), (Oyz), (Ozx) đôi một vuông góc với nhau được gọi là các mặt phẳng tọa độ.
Không gian với hệ tọa độ Oxyz còn được gọi là không gian Oxyz.
• Tọa độ của điểm trong không gian
Trong không gian Oxyz, cho một điểm M tùy ý. Bộ ba số (x; y; z) duy nhất sao cho được gọi là tọa độ của điểm M đối với hệ tọa độ Oxyz. Khi đó, ta viết M = (x; y; z) hoặc M(x; y; z), trong đó x là hoành độ, y là tung độ và z là cao độ của M.
Nhận xét: Nếu điểm M có tọa độ (x; y; z) đối với hệ tọa độ Oxyz thì:
- Hình chiếu vuông góc của M trên các trục Ox, Oy và Oz có tọa độ lần lượt là (x; 0; 0), (0; y; 0) và (0; 0; z).
- Hình chiếu vuông góc của M trên các mặt phẳng (Oxy), (Oyz) và (Ozx) có tọa độ lần lượt là (x; y; 0), (0; y; z), (x; 0; z).
• Tọa độ của vectơ trong không gian
Trong không gian Oxyz, cho vectơ tùy ý. Bộ ba số (x; y; z) duy nhất sao cho được gọi là tọa độ của vectơ đối với hệ tọa độ Oxyz. Khi đó, ta viết hoặc .
Nhận xét:
- Tọa độ của vectơ cũng là tọa độ của điểm M sao cho
- Trong không gian, cho hai vectơ và . Khi đó, nếu và chỉ nếu .
• Tọa độ của vectơ theo tọa độ hai đầu mút
Trong không gian Oxyz, cho hai điểm M(xM; yM; zM) và N(xN; yN; zN). Khi đó: .
Xem thêm các bài viết liên quan hay, chi tiết:
Lý thuyết Hệ trục toạ độ trong không gian– Toán lớp 12 Kết nối tri thức
50 bài toán về cực trị tọa độ không gian (có đáp án 2024) – Toán 12
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Một đội y tế gồm có 220 nữ và 280 nam dự định chia thành các nhóm sao cho số nữ và số nam ở mỗi nhóm đều nhau, biết số nhóm chia được nhiều hơn 1 nhóm và không lớn hơn 5 nhóm. Hỏi có thể chia thành mấy nhóm? Khi đó mỗi nhóm có bao nhiêu nam bao nhiêu nữ.
Câu 3:
Một phép chia có số chia là 5, số dư là 1. Để phép chia là phép chia hết thì cần thêm vào số bị chia bao nhiêu đơn vị?
Câu 7:
Gọi M; N lần lượt là trung điểm của các cạnh AB; AC của tam giác đều ABC. Đẳng thức nào sau đây đúng?
Câu 8:
Tìm số tự nhiên x bé nhất trong các số 2; 3; 4; 5 sao cho 2,6 × x > 7
Câu 9:
Xét các số nguyên dương chia hết cho 3. Tổng số 50 số nguyên dương đầu tiên của dãy số đó bằng