Câu hỏi:

22/07/2024 144

Tìm giá trị nguyên của x để biểu thức \[{\rm{A = }}\frac{{{\rm{6}}{{\rm{x}}^{\rm{2}}}{\rm{ + 8x + 7}}}}{{{{\rm{x}}^{\rm{3}}} - {\rm{1}}}}{\rm{ + }}\frac{{\rm{x}}}{{{{\rm{x}}^{\rm{2}}}{\rm{ + x + 1}}}} - \frac{{\rm{6}}}{{{\rm{x}} - {\rm{1}}}}\]có giá trị là một số nguyên.

A. x = 0

B. x = 1

C. \(x = \pm 1\)

D. \[{\rm{x}} \in \left\{ {0;\,\,2} \right\}\]

Đáp án chính xác

Trả lời:

verified Giải bởi Vietjack

Lời giải

Đáp án đúng là: D

\[{\rm{A = }}\frac{{{\rm{6}}{{\rm{x}}^{\rm{2}}}{\rm{ + 8x + 7}}}}{{{{\rm{x}}^{\rm{3}}} - {\rm{1}}}}{\rm{ + }}\frac{{\rm{x}}}{{{{\rm{x}}^{\rm{2}}}{\rm{ + x + 1}}}} - \frac{{\rm{6}}}{{{\rm{x}} - {\rm{1}}}}\]

\[ = \frac{{6{x^2} + 8x + 7}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} + \frac{x}{{{x^2} + x + 1}} - \frac{6}{{x - 1}}\]

\[ = \frac{{6{x^2} + 8x + 7 + x\left( {x - 1} \right) - 6\left( {{x^2} + x + 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\]

\[ = \frac{{6{x^2} + 8x + 7 + {x^2} - x - 6{x^2} - 6x - 6}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}\]

\[ = \frac{{{x^2} + x + 1}}{{\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = \frac{1}{{x - 1}}\]

Để \[{\rm{A}} \in \mathbb{Z}\] hay \[\frac{1}{{{\rm{x}} - 1}} \in \mathbb{Z}\] thì x – 1 Ư(1) = {−1; 1}.

Ta có bảng sau:

x – 1

−1

1

x

0 (TM)

2 (TM)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tính tổng sau: \[{\rm{A}} = \frac{1}{{1.2}} + \frac{1}{{2.3}} + \frac{1}{{3.4}} + ... + \frac{1}{{99.100}}\].

Xem đáp án » 22/07/2024 317

Câu 2:

Phân thức đối của phân thức \[\frac{{2{\rm{x}} - 1}}{{{\rm{x}} + 1}}\] là

Xem đáp án » 22/07/2024 184

Câu 3:

Với x = 2023 hãy tính giá trị của biểu thức: \[{\rm{B}} = \frac{1}{{{\rm{x}} - 23}} - \frac{1}{{{\rm{x}} - 3}}\].

Xem đáp án » 22/07/2024 170

Câu 4:

Cho 3y – x = 63. Tính giá trị của biểu thức \[{\rm{A = }}\frac{{\rm{x}}}{{{\rm{y}} - {\rm{2}}}}{\rm{ + }}\frac{{{\rm{2x}} - {\rm{3y}}}}{{{\rm{x}} - {\rm{6}}}}\].

Xem đáp án » 22/07/2024 157

Câu 5:

Kết luận nào sau đây là đúng khi nói về giá trị của biểu thức \[{\rm{A}} = \frac{{10}}{{\left( {{\rm{x}} + 2} \right)\left( {3 - {\rm{x}}} \right)}} - \frac{{12}}{{\left( {3 - {\rm{x}}} \right)\left( {3 + {\rm{x}}} \right)}} - \frac{1}{{\left( {{\rm{x}} + 3} \right)\left( {{\rm{x}} + 2} \right)}}\] tại \[{\rm{x}} = - \frac{3}{4}\]?

Xem đáp án » 17/07/2024 149

Câu 6:

Rút gọn biểu thức \[{\rm{A}} = \frac{3}{{2{{\rm{x}}^2} + 2{\rm{x}}}} + \frac{{\left| {2{\rm{x}} - 1} \right|}}{{{{\rm{x}}^2} - 1}} - \frac{2}{{\rm{x}}}\] biết \[{\rm{x}} > \frac{1}{2};\,\,\,{\rm{x}} \ne 1\].

Xem đáp án » 18/07/2024 142

Câu 7:

Chọn khẳng định đúng.

Xem đáp án » 16/07/2024 134

Câu 8:

Tìm phân thức A thỏa mãn: \[\frac{{x - 1}}{{{x^2} - 2x}} + A = \frac{{ - x - 1}}{{{x^2} - 2x}}\].

Xem đáp án » 22/07/2024 129

Câu 9:

Rút gọn biểu thức sau: \[A = \frac{{2{x^2} + {\rm{ }}x - 3}}{{{x^3} - 1}} - \frac{{x - 5}}{{{x^2} + {\rm{ }}x{\rm{ }} + {\rm{ }}1}} - \frac{7}{{x - 1}}\].

Xem đáp án » 23/07/2024 128

Câu 10:

Cho \[A = \frac{{2x - 1}}{{6{x^2} - 6x}} - \frac{3}{{4{x^2} - 4}}\]. Phân thức thu gọn củaA có tử thức là:

Xem đáp án » 22/07/2024 122

Câu 11:

Có bao nhiêu giá trị của x để biểu thức\[{\rm{A = }}\frac{{\rm{3}}}{{{\rm{x}} - {\rm{3}}}} - \frac{{{{\rm{x}}^{\rm{2}}}}}{{{\rm{4}} - {{\rm{x}}^{\rm{2}}}}} - \frac{{{\rm{4x}} - {\rm{12}}}}{{{{\rm{x}}^{\rm{3}}} - {\rm{3}}{{\rm{x}}^{\rm{2}}} - {\rm{4x + 12}}}}\] có giá trị là một số nguyên?

Xem đáp án » 22/07/2024 121

Câu 12:

Tìm x, biết: \[\frac{2}{{{\rm{x}} + 3}} + \frac{3}{{{{\rm{x}}^2} - 9}} = 0\,\,\,\left( {{\rm{x}} \ne \pm \,3} \right)\]

Xem đáp án » 22/07/2024 117

Câu 13:

Cho \[\frac{1}{{1 - {\rm{x}}}} + \frac{1}{{1 + {\rm{x}}}} + \frac{2}{{1 + {{\rm{x}}^2}}} + \frac{4}{{1 + {{\rm{x}}^4}}} + \frac{8}{{1 + {{\rm{x}}^8}}} = \frac{{...}}{{1 - {{\rm{x}}^{16}}}}\]. Số thích hợp điền vào chỗ trống là

Xem đáp án » 16/07/2024 117

Câu 14:

Giá trị của biểu thức \[A = \frac{5}{{2x}} + \frac{{2x - 3}}{{2x - 1}} + \frac{{4{x^2} + {\rm{ }}3}}{{8{x^2} - 4x}}\] với \[{\rm{x}} = \frac{1}{4}\]

Xem đáp án » 16/07/2024 109

Câu 15:

Thực hiện phép tính sau: \[\frac{{{{\rm{x}}^2}}}{{{\rm{x}} + 2}} - \frac{4}{{{\rm{x}} + 2}}\,\,\,\left( {{\rm{x}} \ne - 2} \right)\]

Xem đáp án » 22/07/2024 107

Câu hỏi mới nhất

Xem thêm »
Xem thêm »