Câu hỏi:
12/07/2024 156Tam giác ABC có a = 20, b = 15, c = 9. Bán kính r của đường tròn nội tiếp tam giác đã cho gần với giá trị nào dưới đây?
A. 1,38;
B. 2,75;
C. 4,38;
D. 5,75.
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: D.
Ta có \(p = \frac{1}{2}\left( {a + b + c} \right) = \frac{1}{2}\left( {20 + 15 + 9} \right) = 22\).
Do đó diện tích tam giác ABC là:
\(S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} = \sqrt {22.\left( {22 - 20} \right).\left( {22 - 15} \right).\left( {22 - 9} \right)} = 2\sqrt {1001} \).
Lại có \(S = p.r \Rightarrow r = \frac{S}{p} = \frac{{2\sqrt {1001} }}{{22}} \approx 5,75\).
Hướng dẫn giải:
Đáp án đúng là: D.
Ta có \(p = \frac{1}{2}\left( {a + b + c} \right) = \frac{1}{2}\left( {20 + 15 + 9} \right) = 22\).
Do đó diện tích tam giác ABC là:
\(S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} = \sqrt {22.\left( {22 - 20} \right).\left( {22 - 15} \right).\left( {22 - 9} \right)} = 2\sqrt {1001} \).
Lại có \(S = p.r \Rightarrow r = \frac{S}{p} = \frac{{2\sqrt {1001} }}{{22}} \approx 5,75\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tam giác đều cạnh a nội tiếp đường tròn bán kính R. Khi đó R bằng:
Câu 2:
Tam giác ABC vuông cân tại A và nội tiếp trong đường tròn tâm O bán kính R. Gọi r là bán kính đường tròn nội tiếp tam giác ABC. Khi đó tỉ số \(\frac{R}{r}\) bằng:
Câu 3:
Cho tam giác ABC có AB = 4, AC = 8 và \(\widehat A = 30^\circ \). Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.
Câu 4:
Tam giác ABC có AB = 6, AC = 8 và \(\widehat {BAC} = 60^\circ \). Tính bán kính r của đường tròn nội tiếp tam giác đã cho.
Câu 5:
Tam giác ABC vuông tại A có đường cao AH = 4,8 và \(\frac{{AB}}{{AC}} = \frac{3}{4}\). Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.
Câu 6:
Cho tam giác ABC có: \(\widehat A\)= 60°, a = 14. Bán kính đường tròn ngoại tiếp tam giác ABC bằng:
Câu 7:
Cho tam giác ABC biết a = 21 cm, b = 17 cm, c = 10. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.
Câu 8:
Tam giác ABC có BC = 8 và \(\widehat A = 30^\circ \). Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.
Câu 9:
Tam giác ABC vuông cân tại A có AB = 2a. Tính bán kính r của đường tròn nội tiếp đã cho.
Câu 10:
Tam giác DEF có DE = 5, DF = 8 và \(\widehat {EDF} = 50^\circ \). Bán kính r của đường tròn nội tiếp tam giác đã cho gần nhất với giá trị nào sau đây?