Câu hỏi:
19/07/2024 248Người ta xây một sân khấu với mặt sân có dạng hợp của hai hình tròn giao nhau. Bán kính của hai hình tròn là 20 mét và 15 mét. Khoảng cách giữa hai tâm của hai hình tròn là 30 mét. Chi phí làm mỗi mét vuông phần giao nhau của hai hình tròn là 300 ngàn đồng và chi phí làm mỗi mét vuông phần còn lại là 100 ngàn đồng. Hỏi số tiền làm mặt sân của sân khấu gần với số nào trong các số dưới đây?
A. 202 triệu đồng
B. 208 triệu đồng
C. 218 triệu đồng
D. 200 triệu đồng
Trả lời:
Đáp án A
Gọi O, I lần lượt là tâm của các đường tròn bán kính bằng 20 mét và bán kính bằng 15 mét.
Gắn hệ trục Oxy, vì mét nên .
Phương trình hai đường tròn lần lượt là và .
Gọi A, B là các giao điểm của hai đường tròn đó.
Tọa độ A, B là nghiệm của hệ .
Tổng diện tích hai đường tròn là .
Phần giao của hai hình tròn chính là phần hình phẳng giới hạn bởi hai đồ thị và .
Do đó diện tích phần giao giữa hai hình tròn là .
Số tiền để làm phần giao giữa hai hình tròn là: (đồng).
Số tiền để làm phần còn lại là: (đồng).
Vậy tổng số tiền làm sân khấu là: (đồng).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số có bảng xét dấu của đạo hàm như sau:
Hàm số đồng biến trên khoảng nào dưới đây?
Câu 2:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có cạnh , . Hai mặt bên và cùng vuông góc với mặt phẳng đáy , cạnh . Tính theo a thể tích V của khối chóp S.ABCD.
Câu 3:
Cho hàm số . Hàm số có đồ thị như sau:
Bất phương trình nghiệm đúng với mọi khi và chỉ khi
Câu 6:
Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vuông góc chung của hai đường thẳng và .
Câu 7:
Tích tất cả các số thực m để hàm số có giá trị nhỏ nhất trên đoạn bằng 18 là
Câu 8:
Cho hàm số có đồ thị như hình bên dưới.
Có bao nhiêu giá trị nguyên của tham số m để phương trình có nghiệm?
Câu 9:
Gọi S là diện tích hình phẳng giới hạn bởi các đường , trục hoành và 2 đường thẳng trong hình vẽ bên.
Đặt: . Mệnh đề nào sau đây đúng
Câu 11:
Cho mặt cầu có diện tích đường tròn lớn là 2π. Khi đó, mặt cầu có bán kính là:
Câu 13:
Cho hàm số có đạo hàm xác định trên và thỏa mãn và . Số nghiệm nguyên dương của bất phương trình là
Câu 15:
Cho x, y là các số dương thỏa mãn . Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của . Tính .