Câu hỏi:
20/11/2024 1,898Một lớp có 50 học sinh. Hỏi có bao nhiêu cách phân công 3 học sinh để làm vệ sinh lớp học trong một ngày?
A. 117600
B. 128500
C. 376
D. 436
Trả lời:
Chọn đáp án A
Lời giải
Số cách phân công 3 học sinh để làm vệ sinh lớp học là
*Phương pháp giải:
Sử dụng chỉnh hợp
*Lý thuyết:
Một chỉnh hợp chập k của n là một cách sắp xếp có thứ tự k phần tử từ một tập hợp n phần tử (với k, n là các số tự nhiên, 1 ≤ k ≤ n).
Số các chỉnh hợp chập k của n, kí hiệu là , được tính bằng công thức:
= n.(n – 1)…(n – k + 1) hay (1 ≤ k ≤ n).
Chú ý :
+ Hoán vị sắp xếp tất cả các phần tử của tập hợp, còn chỉnh hợp chọn ra một số phần tử và sắp xếp chúng.
+ Mỗi hoán vị của n phần tử cũng chính là một chỉnh hợp chập n của n phần tử đó. Vì vậy Pn =
Ví dụ: Một nhóm có 8 học sinh, giáo viên muốn chọn ra hai bạn, trong đó một bạn làm nhóm trưởng và một bạn làm nhóm phó. Hỏi có bao nhiêu cách chọn ?
Hướng dẫn giải
Mỗi cách chọn lần lượt 2 bạn trong 8 bạn, một bạn làm nhóm trưởng và một bạn làm nhóm phó là một chỉnh hợp chập 2 của 8 học sinh.
Ta có :
Vậy có 56 cách chọn ra 2 trong 8 bạn, một bạn làm nhóm trưởng, một bạn làm nhóm phó.
Xem thêm
Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - Toán 10 Kết nối tri thức
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một tổ có 6 học sinh, trong đó có 3 học sinh nam và 3 học sinh nữ. Hỏi có bao nhiêu cách xếp các học sinh trong tổ thành một hàng dọc sao cho nam, nữ đứng xen kẽ nhau?
Câu 2:
Một lớp học có 30 học sinh, trong đó có 18 em giỏi Toán, 14 em giỏi văn và 10 em không giỏi môn nào. Số tất cả các em giỏi cả văn lẫn toán là:
Câu 3:
Có 12 tay đua xe đạp cùng xuất phát trong một cuộc đua để chọn ra 3 người về đích đầu tiên. Số kết quả có thể xảy ra là:
Câu 5:
Có 18 đội bóng đá tham gia thi đấu. Mỗi đội chỉ có thể nhận nhiều nhất là một huy chương và đội nào cũng có thể đoạt huy chương. Khi đó, số cách trao 3 loại huy chương vàng, bạc, đồng cho ba đội nhất nhì ba là:
Câu 6:
Có 3 tem thư khác nhau và 6 bì thư khác nhau. Người ta muốn chọn từ đó ra 3 tem thư, 3 bì thư và dán 3 tem thư đó lên 3 bì thư đã chọn, mỗi bì thư chỉ dán 1 tem thư. Hỏi có bao nhiêu cách làm như vậy?
Câu 9:
Có 4 cuốn sách toán khác nhau, 3 sách lý khác nhau, 2 sách hóa khác nhau. Muốn sắp và một kệ dài các cuốn sách cùng môn kề nhau, 2 loại toán và lý phải kề nhau thì số cách sắp là:
Câu 11:
Một hội đồng gồm 5 nam và 4 nữ được tuyển vào một ban quản trị gồm 4 người. Hỏi có bao nhiêu cách tuyển chọn?
Câu 12:
Một tổ học sinh có 5 nam và 5 nữ xếp thành 1 hàng dọc sao cho không có học sinh cùng giới tính đứng kề nhau. Số cách xếp là:
Câu 13:
Từ các chữ số 0, 1, 2, 3, 4, 5 có thể lập được bao nhiêu số tự nhiên có 3 chữ số khác nhau và chia hết cho 9?
Câu 14:
Từ 6 chữ số 0, 1, 2, 3, 4, 5 ta lập được bao nhiêu số chẵn, mỗi số gồm 5 chữ số khác nhau?
Câu 15:
Có bao nhiêu cách chọn và sắp thứ tự 5 cầu thủ để đá bóng luân lưu 11m. Biết rằng cả 11 cầu thủ đều có khả năng như nhau.