Câu hỏi:

25/11/2024 12,228

Một tổ có 6 học sinh, trong đó có 3 học sinh nam và 3 học sinh nữ. Hỏi có bao nhiêu cách xếp các học sinh trong tổ thành một hàng dọc sao cho nam, nữ đứng xen kẽ nhau?

A. 36

B. 42

C. 102

D. 72

Đáp án chính xác

Trả lời:

verified Giải bởi Vietjack

Chọn đáp án D

Lời giải

Ta xét hai trường hợp:

TH1. Bạn nam đứng đầu hàng, khi đó số cách sắp xếp là 3.2.3! = 36 cách.

TH2. Bạn nữ đứng đầu hàng, tương tự TH1, suy ra có 36 cách sắp xếp.

Vậy có 72 cách sắp xếp thỏa mãn yêu cầu bài toán.

*Phương pháp giải:

Sử dụng quy tắc nhân và quy tắc cộng

*Lý thuyết:

1. Quy tắc cộng

– Giả sử một công việc có thể được thực hiện theo phương án A hoặc B. Phương án A có m cách thực hiện, phương án B có n cách thực hiện không trùng với bất kì cách nào của phương án A. Khi đó, công việc có thể thực hiện theo m + n cách.

Ví dụ: Lớp 10A có 20 học sinh, lớp 10C có 24 học sinh. Có bao nhiêu cách cử 1 học sinh lớp 10A hoặc lớp 10C đi tham dự đại hội Đoàn trường?

Hướng dẫn giải

Công việc cử 1 học sinh đi có 2 phương án thực hiện:

Phương án 1: Cử 1 học sinh của lớp 10A, ta có 20 cách.

Phương án 2: Cử 1 học sinh của lớp 10C, ta có 24 cách.

Ta thấy mỗi cách thực hiện của phương án B đều không trùng với cách của phương án A. Do đó theo quy tắc cộng, có 20 + 24 = 44 cách cử 1 học sinh lớp 10A hoặc lớp 10C đi tham dự đại hội Đoàn trường.

2. Quy tắc nhân

– Giả sử một công việc được chia thành hai công đoạn. Công đoạn thứ nhất có m cách thực hiện và ứng với mỗi cách đó có n cách thực hiện công đoạn thứ hai. Khi đó công việc có thể thực hiện theo m. n cách.

Ví dụ: Từ nhà An đến trường đi qua 3 điểm A, B, C. Từ nhà An đến điểm A có 3 cách đi, từ điểm A đến điểm B có 4 cách đi, từ điểm B đến điểm C có 2 cách đi. Từ điểm C đến trường học có 2 cách đi. Hỏi có bao nhiêu cách từ nhà An đến trường?

Hướng dẫn giải

Từ nhà An đến trường đi qua 3 điểm A, B, C, như vậy có 4 công đoạn:

+ Công đoạn 1: Từ nhà An đến điểm A có 3 cách đi.

+ Công đoạn 2: Từ điểm A đến điểm B có 4 cách đi

+ Công đoạn 3: Từ điểm B đến điểm C có 2 cách đi.

+ Công đoạn 4: Từ điểm C đến trường học có 2 cách đi.

Do đó, theo quy tắc nhân, có 3. 4. 2. 2 = 48 cách đi từ nhà An đến trường.

Xem thêm

Lý thuyết Quy tắc cộng và quy tắc nhân – Toán 10 Chân trời sáng tạo 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một lớp học có 30 học sinh, trong đó có 18 em giỏi Toán, 14 em giỏi văn và 10 em không giỏi môn nào. Số tất cả các em giỏi cả văn lẫn toán là:

Xem đáp án » 20/11/2024 7,675

Câu 2:

Có 12 tay đua xe đạp cùng xuất phát trong một cuộc đua để chọn ra 3 người về đích đầu tiên. Số kết quả có thể xảy ra là:

Xem đáp án » 25/11/2024 5,084

Câu 3:

Cho số M=25.33.54 M có tất cả bao nhiêu ước số dương?

Xem đáp án » 23/07/2024 4,005

Câu 4:

Có 18 đội bóng đá tham gia thi đấu. Mỗi đội chỉ có thể nhận nhiều nhất là một huy chương và đội nào cũng có thể đoạt huy chương. Khi đó, số cách trao 3 loại huy chương vàng, bạc, đồng cho ba đội nhất nhì ba là:

Xem đáp án » 23/07/2024 3,423

Câu 5:

Có 3 tem thư khác nhau và 6 bì thư khác nhau. Người ta muốn chọn từ đó ra 3 tem thư, 3 bì thư và dán 3 tem thư đó lên 3 bì thư đã chọn, mỗi bì thư chỉ dán 1 tem thư. Hỏi có bao nhiêu cách làm như vậy?

Xem đáp án » 23/07/2024 2,998

Câu 6:

Có bao nhiêu số là ước dương của 210.36.58 và chia hết cho  25.32.54?

Xem đáp án » 20/07/2024 2,358

Câu 7:

Cho n, k với 0<kn. Mệnh đề nào có giá trị sai?

Xem đáp án » 23/07/2024 1,963

Câu 8:

Một lớp có 50 học sinh. Hỏi có bao nhiêu cách phân công 3 học sinh để làm vệ sinh lớp học trong một ngày?

Xem đáp án » 20/11/2024 1,897

Câu 9:

Có 4 cuốn sách toán khác nhau, 3 sách lý khác nhau, 2 sách hóa khác nhau. Muốn sắp và một kệ dài các cuốn sách cùng môn kề nhau, 2 loại toán và lý phải kề nhau thì số cách sắp là:

Xem đáp án » 20/07/2024 1,739

Câu 10:

Cho A=a;b;c. Số hoán vị của ba phần tử của A là:

Xem đáp án » 16/07/2024 1,483

Câu 11:

Một hội đồng gồm 5 nam và 4 nữ được tuyển vào một ban quản trị gồm 4 người. Hỏi có bao nhiêu cách tuyển chọn?

Xem đáp án » 22/07/2024 850

Câu 12:

Một tổ học sinh có 5 nam và 5 nữ xếp thành 1 hàng dọc sao cho không có học sinh cùng giới tính đứng kề nhau. Số cách xếp là:

Xem đáp án » 18/07/2024 690

Câu 13:

Từ các chữ số 0, 1, 2, 3, 4, 5 có thể lập được bao nhiêu số tự nhiên có 3 chữ số khác nhau và chia hết cho 9?

Xem đáp án » 22/07/2024 410

Câu 14:

Từ 6 chữ số 0, 1, 2, 3, 4, 5 ta lập được bao nhiêu số chẵn, mỗi số gồm 5 chữ số khác nhau?

Xem đáp án » 19/07/2024 389

Câu 15:

Có bao nhiêu cách chọn và sắp thứ tự 5 cầu thủ để đá bóng luân lưu 11m. Biết rằng cả 11 cầu thủ đều có khả năng như nhau.

Xem đáp án » 23/07/2024 345

Câu hỏi mới nhất

Xem thêm »
Xem thêm »