Câu hỏi:
22/07/2024 132Một hộp chứa 5 bi trắng, 6 bi đỏ và 7 bi xanh, tất cả các bi có kích thước và khối lượng như nhau. Chọn ngẫu nhiên 6 bi từ hộp đó. Tính xác suất để 6 bi lấy được có đủ ba màu đồng thời hiệu của số bi đỏ và trắng, hiệu của số bi xanh và đỏ, hiệu của số bi trắng và xanh theo thứ tự lập thành cấp số cộng
A.
B.
C.
D.
Trả lời:
Đáp án C
Số phần tử của không gian mẫu chính là số cách lấy ngẫu nhiên 6 viên bi bất kì trong 18 viên nên .
Gọi A là biến cố “6 bi lấy được có đủ ba màu đồng thời hiệu của số bi đỏ và trắng, hiệu của số bi xanh và đỏ, hiệu của số bi trắng và xanh tạo thành cấp số cộng”.
Gọi lần lượt là số bi trắng, bi đỏ và bi xanh trong 6 viên bi được chọn ra.
Theo đề bài ta có: lập thành một cấp số cộng.
Do đó: . Lại có nên ta có các trường hợp.
Trường hợp 1: và . Khi đó số cách chọn 6 viên bi là cách.
Trường hợp 2: . Khi đó số cách chọn 6 viên bi là cách.
Vậy số phần tử của biến cố A là .
Do đó xác suất của biến cố A là .
Đáp án C
Số phần tử của không gian mẫu chính là số cách lấy ngẫu nhiên 6 viên bi bất kì trong 18 viên nên .
Gọi A là biến cố “6 bi lấy được có đủ ba màu đồng thời hiệu của số bi đỏ và trắng, hiệu của số bi xanh và đỏ, hiệu của số bi trắng và xanh tạo thành cấp số cộng”.
Gọi lần lượt là số bi trắng, bi đỏ và bi xanh trong 6 viên bi được chọn ra.
Theo đề bài ta có: lập thành một cấp số cộng.
Do đó: . Lại có nên ta có các trường hợp.
Trường hợp 1: và . Khi đó số cách chọn 6 viên bi là cách.
Trường hợp 2: . Khi đó số cách chọn 6 viên bi là cách.
Vậy số phần tử của biến cố A là .
Do đó xác suất của biến cố A là .CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B; AB = BC = 1, AD = 2. Các mặt chéo (SAC) và (SBD) cùng vuông góc với mặt đáy (ABCD). Biết góc giữa hai mặt phẳng (SAB) và (ABCD) bằng 60° (tham khảo hình vẽ bên). Khoảng cách từ điểm D đến mặt phẳng (SAB) là
Câu 2:
Trong không gian Oxyz, cho điểm A(1;-3;2). Gọi M, N, P lần lượt là hình chiếu vuông góc của A lên trục Ox, Oy, Oz. Phương trình mặt phẳng (MNP) là
Câu 4:
Cho hàm số bậc hai có đồ thị như hình vẽ bên. Gọi S là diện tích hình phẳng giới hạn bởi đồ thị hàm số và trục hoành (miền phẳng được tô đậm trên hình vẽ). Mệnh đề nào sau đây sai?
Câu 5:
Trong không gian Oxyz, cho đường thẳng và mặt phẳng . Đường thẳng nằm trong mặt phẳng (P), cắt và vuông góc với đường thẳng d có phương trình là
Câu 6:
Cho hình lục giác đều ABCDEF có cạnh bằng 2 (tham khảo hình vẽ). Quay lục giác xung quanh đường chéo AD ta được một khối tròn xoay. Thể tích khối tròn xoay đó là
Câu 7:
Cho khối lăng trụ ABC.A'B'C' có đáy ABC là tam giác vuông tại A, AB = a, BC = 2a, A'B vuông góc với mặt phẳng (ABC) và góc giữa A'C và mặt phẳng (ABC) bằng 30° (tham khảo hình vẽ bên). Tính thể tích khối lăng trụ ABC.A'B'C'.
Câu 10:
Trong không gian Oxyz, cho hai điểm A(1;1;3), B(5;2;-1) và hai điểm M, N thay đổi trên mặt phẳng (Oxy) sao cho điểm I(1;2;0) luôn là trung điểm của MN. Khi biểu thức đạt giá trị nhỏ nhất. Tính .
Câu 12:
Tính thể tích khối cầu ngoại tiếp hình lập phương có cạnh bằng a.
Câu 13:
Cho hàm số có bảng biến thiên như hình vẽ bên
Hàm số đồng biến trên khoảng nào dưới đây?