Câu hỏi:

07/11/2024 766

Cho hàm số y=ax4+bx2+c a0 có đồ thị như hình vẽ bên. Mệnh đề nào sau đây đúng

Cho hàm số y = ax^4 + bx^2 + c a khác 0 có đồ thị như hình vẽ bên. Mệnh đề nào sau đây đúng (ảnh 1)

A. a>0, b>0, c<0

B. a<0, b>0, c<0

C. a>0, b<0, c<0

Đáp án chính xác

D. a>0, b>0, c>0

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng:C
*Lời giải:

Quan sát đồ thị có bề lõm quay lên trên Þ a > 0

Đồ thị hàm số cắt trục tung tại điểm có tung độ âm Þ c < 0

Hàm số có 3 cực trị Þa.b < 0 mà a > 0 nên Þ b < 0

*Phương pháp giải:

Nhận dạng đồ thị hàm bậc 4 trùng phương: y = ax4 + bx2 + c

+) Đạo hàm: Các dạng bài tập nhận dạng đồ thị hàm số và cách giải

Các dạng bài tập nhận dạng đồ thị hàm số và cách giải

* Các lý thuyết thêm và các dạng bài toán về nhận diện đồ thị hàm số:

1.Nhận dạng đồ thị hàm số bậc 3: y = ax3 + bx2 + cx + d 

 

a > 0 

a < 0 

y' = 0 có hai nghiệm phân biệt hay  Δy > 0

 Các dạng bài tập nhận dạng đồ thị hàm số và cách giải

 Các dạng bài tập nhận dạng đồ thị hàm số và cách giải

 y' = 0 có nghiệm kép hay Δy = 0 

 Các dạng bài tập nhận dạng đồ thị hàm số và cách giải

Các dạng bài tập nhận dạng đồ thị hàm số và cách giải 

 y' = 0 vô nghiệm hay Δy < 0 

 Các dạng bài tập nhận dạng đồ thị hàm số và cách giải

 Các dạng bài tập nhận dạng đồ thị hàm số và cách giải

 

   Hệ số a

Đồ thị hướng lên 

a > 0

Đồ thị hướng xuống

a < 0

 Hệ số b

Điểm uốn "lệch phải" so với Oy hoặc 2 điểm cực trị lệch phải so với Oy

ab < 0

Điểm uốn "lệch trái" so với Oy hoặc hai điểm cực trị "lệch trái" so với Oy 

ab > 0

Điểm uốn thuộc Oy hoặc hai điểm cực trị cách đều trục Oy 

b = 0

Hệ số c

Không có cực trị

c = 0 

hoặc ac > 0

Hai điểm cực trị nằm về hai phía trục tung Oy 

ac < 0

Có 1 điểm cực trị nằm trên Oy

c = 0

Hệ số d

Giao điểm với trục tung nằm trên điểm O

d > 0

Giao điểm với trục tung nằm dưới điểm O 

d < 0

Giao điểm với trục tung trùng điểm O 

d = 0

2. Nhận dạng đồ thị hàm bậc 4 trùng phương: y = ax4 + bx2 + c

+) Đạo hàm: Các dạng bài tập nhận dạng đồ thị hàm số và cách giải

Các dạng bài tập nhận dạng đồ thị hàm số và cách giải

  Hệ số a

Đồ thị có bề lõm hướng lên

a > 0

Đồ thị có bề lõm hướng xuống 

a < 0

Hệ số b

Đồ thị hàm số có 3 điểm cực trị

ab < 0

Đồ thị hàm số chỉ có 1 điểm cực trị (Đang xét a ≠ 0)

ab ≥ 0

Hệ số c

Giao điểm với trục tung nằm trên điểm O

c > 0

Giao điểm với trục tung nằm dưới điểm O

c < 0

Giao điểm với trục tung trùng điểm O

c=0

3. Nhận dạng đồ thị hàm số Các dạng bài tập nhận dạng đồ thị hàm số và cách giải

+ Tập xác định: Các dạng bài tập nhận dạng đồ thị hàm số và cách giải 

+ Đạo hàm: Các dạng bài tập nhận dạng đồ thị hàm số và cách giải 

+ Đồ thị hàm số có: Các dạng bài tập nhận dạng đồ thị hàm số và cách giải

+ Đồ thị có tâm đối xứng: Các dạng bài tập nhận dạng đồ thị hàm số và cách giải 

Các dạng bài tập nhận dạng đồ thị hàm số và cách giải

Tiêu chí nhận dạng:

- Dựa vào tiệm cận đứng + tiệm cận ngang.

- Dựa vào giao Ox,Oy

- Dựa vào sự đồng biến, nghịch biến.

   ab

Giao Ox nằm phía "phải" điểm O

ab < 0

Giao Ox nằm phía "trái" điểm O         

ab > 0

Không cắt Ox

a = 0

 ac

Tiệm cận ngang nằm "phía trên" Ox

ac > 0

Tiệm cận ngang nằm "phía dưới" Ox

ac < 0

Tiệm cận ngang trùng Ox

a = 0

bd

Giao Oy nằm trên điểm O

bd > 0

Giao Oy nằm dưới điểm O

bd < 0

Giao Oy trùng gốc tọa độ O

b = 0

cd

Tiệm cận đứng nằm "bên phải" Oy

cd < 0

Tiệm cận đứng nằm "bên trái" Oy

cd > 0

Tiệm cận đứng trùng Oy

d = 0

4. Lưu ý:

- Tại giao điểm với trục Ox thì thay y = 0 và biện luận.

- Tại giao điểm với trục Oy thì thay x = 0 và biện luận.

Xem thêm các bài viết liên quan hay, chi tiết:

Lý thuyết Ôn tập chương 1 (mới 2024 + Bài Tập) – Toán 12 

50 bài tập về nhận dạng đồ thị hàm số (có đáp án 2024) – Toán 12

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại AB; AB = BC = 1, AD = 2. Các mặt chéo (SAC) và (SBD) cùng vuông góc với mặt đáy (ABCD). Biết góc giữa hai mặt phẳng (SAB) và (ABCD) bằng 60° (tham khảo hình vẽ bên). Khoảng cách từ điểm D đến mặt phẳng (SAB) 

Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B; AB = BC = 1, AD = 2. Các mặt chéo (SAC) và (SBD) cùng vuông góc (ảnh 1)

Xem đáp án » 21/07/2024 2,100

Câu 2:

Trong không gian Oxyz, cho điểm A(1;-3;2). Gọi M, N, P lần lượt là hình chiếu vuông góc của A lên trục Ox, Oy, Oz. Phương trình mặt phẳng (MNP) 

Xem đáp án » 23/07/2024 1,836

Câu 3:

Cho hàm số bậc hai y=fx=x45x2+4 có đồ thị như hình vẽ bên. Gọi S là diện tích hình phẳng giới hạn bởi đồ thị hàm số y=fx và trục hoành (miền phẳng được tô đậm trên hình vẽ). Mệnh đề nào sau đây sai?

Cho hàm số bậc hai y = f(x) = x^4 - 5x^2 + 4 có đồ thị như hình vẽ bên. Gọi S là diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x) và trục (ảnh 1)

Xem đáp án » 21/07/2024 458

Câu 4:

Trong không gian Oxyz, cho đường thẳng d:x21=y42=z52 và mặt phẳng P:2x+z5=0. Đường thẳng nằm trong mặt phẳng (P), cắt và vuông góc với đường thẳng d có phương trình là

Xem đáp án » 14/07/2024 287

Câu 5:

Cho hình lục giác đều ABCDEF có cạnh bằng 2 (tham khảo hình vẽ). Quay lục giác xung quanh đường chéo AD ta được một khối tròn xoay. Thể tích khối tròn xoay đó là

Cho hình lục giác đều ABCDEF có cạnh bằng 2 (tham khảo hình vẽ). Quay lục giác xung quanh đường chéo AD ta được một khối tròn xoay. Thể tích khối tròn xoay đó là (ảnh 1)

Xem đáp án » 12/07/2024 259

Câu 6:

Cho khối lăng trụ ABC.A'B'C' có đáy ABC là tam giác vuông tại A, AB = a, BC = 2a, A'B vuông góc với mặt phẳng (ABC) và góc giữa A'C và mặt phẳng (ABC) bằng 30° (tham khảo hình vẽ bên). Tính thể tích khối lăng trụ ABC.A'B'C'.

Cho khối lăng trụ ABC.A'B'C' có đáy ABC là tam giác vuông tại A, AB = a, BC = 2a, A'B vuông góc với mặt phẳng (ABC) và góc (ảnh 1)

Xem đáp án » 21/07/2024 210

Câu 7:

Hàm số fx=23x1 có đạo hàm

Xem đáp án » 13/07/2024 206

Câu 8:

Cho hàm số y=fx có đồ thị C như hình vẽ. Tọa độ điểm cực tiểu của C 

Cho hàm số y = f(x) có đồ thị (C) như hình vẽ. Tọa độ điểm cực tiểu của (C) là (ảnh 1)

Xem đáp án » 19/07/2024 191

Câu 9:

Số cách sắp xếp 5 học sinh thành một hàng dọc là?

Xem đáp án » 13/07/2024 190

Câu 10:

Trong không gian Oxyz, cho hai điểm A(1;1;3), B(5;2;-1) và hai điểm M, N thay đổi trên mặt phẳng (Oxy) sao cho điểm I(1;2;0) luôn là trung điểm của MN. Khi biểu thức P=MA2+2NB2+MA¯.NB¯ đạt giá trị nhỏ nhất. Tính T=2xM4xN+7yMyN.

Xem đáp án » 17/07/2024 189

Câu 11:

Tính thể tích khối cầu ngoại tiếp hình lập phương có cạnh bằng a.

Xem đáp án » 22/07/2024 187

Câu 12:

Cho hàm số y=fx có bảng biến thiên như hình vẽ bên

Cho hàm số y = f(x) có bảng biến thiên như hình vẽ bên Hàm số y = f(x) đồng biến trên khoảng nào dưới đây (ảnh 1)

Hàm số y=fx đồng biến trên khoảng nào dưới đây?

Xem đáp án » 18/07/2024 180

Câu 13:

Trong không gian Oxyz, cho hai véc tơ a=4;5;3 b=2;2;3. Véc tơ x=a+2b có tọa độ là

Xem đáp án » 18/07/2024 176

Câu 14:

Tập xác định của hàm số y=x24x+3π 

Xem đáp án » 23/07/2024 174

Câu 15:

Cho số phức z=i3i+4. Tìm phần thực và phần ảo của số phức z.

Xem đáp án » 18/07/2024 172

Câu hỏi mới nhất

Xem thêm »
Xem thêm »