Câu hỏi:
23/07/2024 212Hình nào dưới đây vừa có tâm đối xứng vừa có trục đối xứng?
A. hình bình hành
B. hình chữ nhật
C. hình tam giác đều
D. hình tam giác cân
Trả lời:
Hình bình hành có tâm đối xứng; hình tam giác cân và hình tam giác đều chỉ có trục đối xứng.
Đáp án B
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong mặt phẳng Oxy cho đường tròn (C) có phương trình ; điểm I(1;2). Phép đối xứng tâm I biến (C) thành (C’) có phương trình:
Câu 2:
Trong mặt phẳng Oxy cho đường thẳng d có phương trình 6x + 5y - 7 = 0; điểm I(2;-1). Phép đối xứng tâm I biến d thành d’ có phương trình:
Câu 3:
Cho hình bình hành ABCD tâm O. Gọi E, F lần lượt là trung điểm của các cạnh BC và AD. Phép đối xứng tâm O biến.
Câu 4:
Trong mặt phẳng Oxy cho đường thẳng d có phương trình 2x - 6y + 5 = 0 điểm I(2;-4). Phép đối xứng tâm I biến d thành d’ có phương trình:
Câu 5:
Hình có hai đường thẳng a và b song song với nhau thì có bao nhiêu phép đối xứng tâm biến a thành b?
Câu 6:
Có bao nhiêu phép đối xứng tâm biến hình chữ nhật thành chính nó?
Câu 7:
Trong mặt phẳng Oxy cho đường tròn (C) có phương trình và đường tròn (C’) có phương trình . Phép đối xứng tâm K biến (C) thành (C’). tọa độ của K là:
Câu 8:
Trong mặt phẳng Oxy cho parabol (P) có phương trình: . Phép đối xứng tâm I(4; -3) biến P thành (P’) có phương trình:
Câu 9:
Trong mặt phẳng Oxy cho điểm M(-3;7). Phép đối xứng tâm O biến M thành M’ thì tọa độ M’ là:
Câu 10:
Trong mặt phẳng Oxy cho hình (H) gồm đường thẳng d có phương trình 3x - 5y + 7 = 0 và đường thẳng d’ có phương trình:
Tâm đối xứng của (H) là:
Câu 11:
Trong mặt phẳng Oxy phép đối xứng tâm I biến M(6; -9) thành M'(3;7). Tọa độ của tâm đối xứng I là:
Câu 12:
Trong mặt phẳng Oxy cho parabol (P) có phương trình . Phép đối xứng tâm O(0;0) biến (P) thành (P’) có phương trình:
Câu 13:
Trong mặt phẳng Oxy cho điểm M(-5;9). Phép đối xứng tâm I(2; -6) biến M thành M’ thì tọa độ M’ là.
Câu 14:
Trong mặt phẳng Oxy cho điểm I(2; -5). Phép đối xứng tâm I biến M(x; y) thành M'(3; 7). Tọa độ của M là:
Câu 15:
Trong mặt phẳng Oxy cho đường tròn (C) có phương trình: . Phép đối xứng có tâm O là gốc tọa độ biến (C) thành (C’) có phương trình: