Câu hỏi:
23/07/2024 152
Chứng tỏ rằng các phương trình sau có nghiệm trong khoảng tương ứng:
b) cos x = x, trong khoảng (0; 1).
Chứng tỏ rằng các phương trình sau có nghiệm trong khoảng tương ứng:
b) cos x = x, trong khoảng (0; 1).
Trả lời:
b) Xét hàm số g(x) = cos x – x xác định trên ℝ.
Do đó hàm số g(x) liên tục trên đoạn [0; 1].
Mà g(0) = cos 0 – 0 = 1 > 0 và g(1) = cos 1 – 1 < 0.
Suy ra g(0) . g(1) < 0.
Do đó, theo tính chất của hàm số liên tục, tồn tại điểm c ∈ (0; 1) sao cho g(c) = 0.
Tức là g(x) = 0 có ít nhất một nghiệm thuộc khoảng (0; 1).
Vậy phương trình cos x = x có nghiệm trong khoảng (0; 1).
b) Xét hàm số g(x) = cos x – x xác định trên ℝ.
Do đó hàm số g(x) liên tục trên đoạn [0; 1].
Mà g(0) = cos 0 – 0 = 1 > 0 và g(1) = cos 1 – 1 < 0.
Suy ra g(0) . g(1) < 0.
Do đó, theo tính chất của hàm số liên tục, tồn tại điểm c ∈ (0; 1) sao cho g(c) = 0.
Tức là g(x) = 0 có ít nhất một nghiệm thuộc khoảng (0; 1).
Vậy phương trình cos x = x có nghiệm trong khoảng (0; 1).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Chứng tỏ rằng các phương trình sau có nghiệm trong khoảng tương ứng:
a) , trong khoảng (1; 2).
Chứng tỏ rằng các phương trình sau có nghiệm trong khoảng tương ứng:
a) , trong khoảng (1; 2).
Câu 3:
Cho hàm số g(x) liên tục trên ℝ trừ điểm x = 0. Xét tính liên tục của hàm số tại x = 1.
Cho hàm số g(x) liên tục trên ℝ trừ điểm x = 0. Xét tính liên tục của hàm số tại x = 1.
Câu 4:
Xét tính liên tục của các hàm số sau trên tập xác định của chúng:
a) ;
Xét tính liên tục của các hàm số sau trên tập xác định của chúng:
a) ;
Câu 6:
Xét tính liên tục của các hàm số sau trên tập xác định của chúng:
b) .
Xét tính liên tục của các hàm số sau trên tập xác định của chúng:
b) .