Câu hỏi:
20/07/2024 161
Cho tam giác nhọn MNP có \(\widehat N = 60^\circ \); MP = 8 cm; MN = 5 cm. Số đo của góc M gần nhất với giá trị:
A. 85°;
B. 86°;
C. 87°;
D. 88°.
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: C.
Áp dụng định lý sin ta có:
\(\frac{{MN}}{{\sin P}} = \frac{{MP}}{{\sin N}} \Rightarrow \sin P = \frac{{MN.\sin N}}{{MP}} = \frac{{5.\sin 60^\circ }}{8} = \frac{{5\sqrt 3 }}{{16}}\)
\( \Rightarrow \widehat P \approx 32^\circ 46'\) (do góc P nhọn)
\( \Rightarrow \widehat M \approx 180^\circ - 60^\circ - 32^\circ 46' = 87^\circ 14'\) (suy ra từ định lí tổng 3 góc trong tam giác).
Hướng dẫn giải:
Đáp án đúng là: C.
Áp dụng định lý sin ta có:
\(\frac{{MN}}{{\sin P}} = \frac{{MP}}{{\sin N}} \Rightarrow \sin P = \frac{{MN.\sin N}}{{MP}} = \frac{{5.\sin 60^\circ }}{8} = \frac{{5\sqrt 3 }}{{16}}\)
\( \Rightarrow \widehat P \approx 32^\circ 46'\) (do góc P nhọn)
\( \Rightarrow \widehat M \approx 180^\circ - 60^\circ - 32^\circ 46' = 87^\circ 14'\) (suy ra từ định lí tổng 3 góc trong tam giác).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho góc xOy bằng 60°. Gọi A và B là hai điểm di động lần lượt trên Ox và Oy sao cho AB = \(4\sqrt 3 \). Tính độ dài đoạn OA để OB có độ dài lớn nhất.
Câu 2:
Cho tam giác ABC biết AB = 4, BC = 6, \(\widehat B = 120^\circ \). Độ dài cạnh AC là
Câu 3:
Cho tam giác ABC nhọn biết a = \(\sqrt {24} \), c = \(2 + \sqrt {12} \) và bán kính của đường tròn ngoại tiếp tam giác ABC là R = \(2\sqrt 2 \). Tìm cạnh b của tam giác ABC biết b là số nguyên.
Câu 4:
Cho tam giác ABC có \(\widehat A = 120^\circ \), AB = 1, AC = 2. Trên tia CA kéo dài lấy điểm D sao cho BD = 2. Tính AD.
Câu 5:
Cho tam giác DEF có DE = 4 cm; DF = 5 cm và EF = 3 cm. Số đo của của góc D gần nhất với giá trị nào dưới đây?
Câu 6:
Cho tam giác ABC có \(\widehat A = 112^\circ \), AC = 7 và AB = 10. Tính độ dài của cạnh BC và các góc B, C của tam giác đó.
Câu 7:
Cho tam giác ABC có \(\widehat A = 60^\circ \), \(\widehat B = 45^\circ \), b = 4. Tính cạnh a.
Câu 8:
Cho tam giác ABC biết \(\frac{{\sin B}}{{\sin C}} = \sqrt 3 \) và \(AB = 2\sqrt 2 \). Tính AC.
Câu 9:
Cho tam giác ABC có a = 4, b = 6 và cosC = \(\frac{2}{3}\). Giá trị của c bằng: