Câu hỏi:
15/01/2025 11Cho tam giác ABC có đường cao AI. Từ A kẻ tia Ax vuông góc AC, từ B kẻ tia By song song AC. Gọi M là giao điểm của tia Ax và tia By. Nối M với trung điểm P của AB, đường thẳng MP cắt AC tại Q và đường thẳng BQ cắt AI tại H.
a) Tứ giác AMBQ là hình gì?
b) Chứng minh CH vuông góc AB.
c) Chứng minh tam giác PIQ cân.
Trả lời:
*Lời giải:
Vì Ax ⊥ AC ⇒ AM ⊥ AC
mà BM // AC
⇒ AM ⊥ BM
Chứng minh tương tự ⇒ AQ // BM và BM // AQ (cmt)
Suy ra AMBQ là hình bình hành.
Mà .
Vậy AMBQ là hình chữ nhật.
b) BQ ⊥ AC (cmt) mà
Suy ra H là trực tâm của tam giác ABC.
Do đó: CH ⊥ AB
c) AMBQ là hình chữ nhật mà
⇒ P là trung điểm AB và P là trung điểm QM
vuông tại I có đường trung tuyến IP
⇒
⇒ IP = PQ
⇒ cân tại P.
*Phương pháp giải:
Năm vững dấu hiệu nhận biết các hình để chứng minh
Nắm lại lý thuyết và cách chứng minh các đường trung trực, trung tuyến,...
*Lý thuyết nắm thêm
1. Định nghĩa
Hình bình hành là tứ giác có các cặp cạnh đối song song
Tứ giác ABCD là hình bình hành
2. Tính chất: Trong hình bình hành
a) Các cạnh đối bằng nhau;
b) Các góc đối bằng nhau;
c) Hai đường chéo cắt nhau tại trung điểm mỗi đường.
3. Dấu hiệu nhận biết
a) Tứ giác có các cạnh đối song song là hình bình hành;
b) Tứ giác có các cạnh đối bằng nhau là hình bình hành;
c) Tứ giác có hai cạnh đối song song và bằng nhau là hình bình hành;
d) Tứ giác có các góc đối bằng nhau là hình bình hành;
e) Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường là hình bình hành.
II. Các dạng toán và phương pháp giải
Dạng 1. Vận dụng tính chất của hình bình hành để chứng minh các tính chất hình học
Phương pháp giải: Vận dụng định nghĩa, các tính chất về cạnh, góc và đường chéo của hình bình hành.
Dạng 2. Chứng minh tứ giác là hình bình hành
Phương pháp giải: Áp dụng các dấu hiệu nhận biết của hình bình hành
a) Tứ giác có các cạnh đối song song là hình bình hành;
b) Tứ giác có các cạnh đối bằng nhau là hình bình hành;
c) Tứ giác có hai cạnh đối song song và bằng nhau là hình bình hành;
d) Tứ giác có các góc đối bằng nhau là hình bình hành;
e) Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường là hình bình hành.
Xem thêm các bài viết liên quan hay, chi tiết
Giải Toán 8 (Kết nối tri thức): Bài tập cuối chương 3 trang 74
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Một đội y tế gồm có 220 nữ và 280 nam dự định chia thành các nhóm sao cho số nữ và số nam ở mỗi nhóm đều nhau, biết số nhóm chia được nhiều hơn 1 nhóm và không lớn hơn 5 nhóm. Hỏi có thể chia thành mấy nhóm? Khi đó mỗi nhóm có bao nhiêu nam bao nhiêu nữ.
Câu 3:
Một phép chia có số chia là 5, số dư là 1. Để phép chia là phép chia hết thì cần thêm vào số bị chia bao nhiêu đơn vị?
Câu 7:
Gọi M; N lần lượt là trung điểm của các cạnh AB; AC của tam giác đều ABC. Đẳng thức nào sau đây đúng?
Câu 8:
Tìm số tự nhiên x bé nhất trong các số 2; 3; 4; 5 sao cho 2,6 × x > 7
Câu 9:
Xét các số nguyên dương chia hết cho 3. Tổng số 50 số nguyên dương đầu tiên của dãy số đó bằng