Câu hỏi:
16/07/2024 198
Cho tam giác ABC. Chứng minh các khẳng định sau:
Góc A tù khi và chỉ khi a2 > b2 + c2.
Cho tam giác ABC. Chứng minh các khẳng định sau:
Góc A tù khi và chỉ khi a2 > b2 + c2.
Trả lời:
Hướng dẫn giải:
Theo định lí côsin trong tam giác, ta có:
\(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\).
Từ a2 > b2 + c2 ⇔ b2 + c2 – a2 < 0 ⇔ cos A < 0 ⇔ Góc A là góc tù.
Hướng dẫn giải:
Theo định lí côsin trong tam giác, ta có:
\(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\).
Từ a2 > b2 + c2 ⇔ b2 + c2 – a2 < 0 ⇔ cos A < 0 ⇔ Góc A là góc tù.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có BC = a, CA = b, AB = c. Mệnh đề nào sau đây là đúng?
Câu 2:
Cho tam giác ABC thỏa mãn sin C = 2sin Bcos A. Chứng minh rằng tam giác ABC cân.
Câu 3:
Cho tam giác ABC. Chứng minh các khẳng định sau:
Góc A nhọn khi và chỉ khi a2 < b2 + c2;
Cho tam giác ABC. Chứng minh các khẳng định sau:
Góc A nhọn khi và chỉ khi a2 < b2 + c2;
Câu 4:
Xác định dạng của tam giác ABC biết S = p(p – a) với S là diện tích tam giác ABC và p là nửa chu vi tam giác.
Câu 5:
Cho tam giác có: a = 8, b = 11, \(\widehat C = 30^\circ \). Xét dạng của tam giác ABC.
Câu 6:
Cho tam giác ABC có a = 4, b = 6, c = 8. Khẳng định nào sau đây là đúng?
Câu 7:
Cho tam giác ABC có a = 9; b = 12; c = 15. Xét dạng của tam giác ABC
Câu 8:
Cho tam giác ABC có: \(\widehat B = 60^\circ \), a = 12, R = 4\(\sqrt 3 \). Xác định dạng của tam giác?
Câu 9:
Cho a2, b2, c2 là độ dài các cạnh của một tam giác nào đó và a, b, c là độ dài các cạnh của tam giác ABC. Khi đó, khẳng định nào sau đây đúng?
Câu 10:
Cho tam giác ABC thỏa mãn \(\frac{a}{{\cos A}} = \frac{b}{{\cos B}}\). Xác định dạng của tam giác ABC.
Câu 11:
Cho tam giác ABC. Chứng minh các khẳng định sau:
Góc A vuông khi và chỉ khi a2 = b2 + c2;
Cho tam giác ABC. Chứng minh các khẳng định sau:
Góc A vuông khi và chỉ khi a2 = b2 + c2;
Câu 12:
Cho tam giác ABC có a = 10, c = 5\(\sqrt 3 \), \(\widehat B = 30^\circ \). Tìm mệnh đề đúng trong các mệnh đề sau?